热方程的改进哈密顿矩阵估计值

Lang Qin, Qi S. Zhang
{"title":"热方程的改进哈密顿矩阵估计值","authors":"Lang Qin, Qi S. Zhang","doi":"arxiv-2409.10379","DOIUrl":null,"url":null,"abstract":"In this paper, we remove the assumption on the gradient of the Ricci\ncurvature in Hamilton's matrix Harnack estimate for the heat equation on all\nclosed manifolds, answering a question which has been around since the 1990s.\nNew ingredients include a recent sharp Li-Yau estimate, construction of a\nsuitable vector field and various use of integral arguments, iteration and a\nlittle tensor algebra.","PeriodicalId":501113,"journal":{"name":"arXiv - MATH - Differential Geometry","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An improved Hamilton matrix estimates for the heat equation\",\"authors\":\"Lang Qin, Qi S. Zhang\",\"doi\":\"arxiv-2409.10379\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we remove the assumption on the gradient of the Ricci\\ncurvature in Hamilton's matrix Harnack estimate for the heat equation on all\\nclosed manifolds, answering a question which has been around since the 1990s.\\nNew ingredients include a recent sharp Li-Yau estimate, construction of a\\nsuitable vector field and various use of integral arguments, iteration and a\\nlittle tensor algebra.\",\"PeriodicalId\":501113,\"journal\":{\"name\":\"arXiv - MATH - Differential Geometry\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Differential Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10379\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们取消了汉密尔顿对全闭合流形上热方程的矩阵哈纳克估计中对里奇曲率梯度的假设,回答了一个自 20 世纪 90 年代以来一直存在的问题。新内容包括最近的尖锐李-尤估计、合适向量场的构建以及积分论证、迭代和少量张量代数的各种使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An improved Hamilton matrix estimates for the heat equation
In this paper, we remove the assumption on the gradient of the Ricci curvature in Hamilton's matrix Harnack estimate for the heat equation on all closed manifolds, answering a question which has been around since the 1990s. New ingredients include a recent sharp Li-Yau estimate, construction of a suitable vector field and various use of integral arguments, iteration and a little tensor algebra.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信