具有正利玛窦曲率的三球体中嵌入极小环的存在性

Xingzhe Li, Zhichao Wang
{"title":"具有正利玛窦曲率的三球体中嵌入极小环的存在性","authors":"Xingzhe Li, Zhichao Wang","doi":"arxiv-2409.10391","DOIUrl":null,"url":null,"abstract":"In this paper, we prove the strong Morse inequalities for the area functional\nin the space of embedded tori and spheres in the three sphere. As a\nconsequence, we prove that in the three dimensional sphere with positive Ricci\ncurvature, there exist at least 4 distinct embedded minimal tori. Suppose in\naddition that the metric is bumpy, then the three-sphere contains at least 9\ndistinct embedded minimal tori. The proof relies on a multiplicity one theorem\nfor the Simon-Smith min-max theory proved by the second author and X. Zhou.","PeriodicalId":501113,"journal":{"name":"arXiv - MATH - Differential Geometry","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence of embedded minimal tori in three-spheres with positive Ricci curvature\",\"authors\":\"Xingzhe Li, Zhichao Wang\",\"doi\":\"arxiv-2409.10391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we prove the strong Morse inequalities for the area functional\\nin the space of embedded tori and spheres in the three sphere. As a\\nconsequence, we prove that in the three dimensional sphere with positive Ricci\\ncurvature, there exist at least 4 distinct embedded minimal tori. Suppose in\\naddition that the metric is bumpy, then the three-sphere contains at least 9\\ndistinct embedded minimal tori. The proof relies on a multiplicity one theorem\\nfor the Simon-Smith min-max theory proved by the second author and X. Zhou.\",\"PeriodicalId\":501113,\"journal\":{\"name\":\"arXiv - MATH - Differential Geometry\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Differential Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10391\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们证明了三维球内嵌入环和球空间中面积函数的强莫尔斯不等式。由此,我们证明了在具有正里氏曲率的三维球中,至少存在 4 个不同的内嵌极小环。此外,假设度量是凹凸不平的,那么三维球中至少包含 9 个不同的内嵌极小环。证明依赖于第二作者和周旭证明的西蒙-史密斯最小理论的多重性一定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence of embedded minimal tori in three-spheres with positive Ricci curvature
In this paper, we prove the strong Morse inequalities for the area functional in the space of embedded tori and spheres in the three sphere. As a consequence, we prove that in the three dimensional sphere with positive Ricci curvature, there exist at least 4 distinct embedded minimal tori. Suppose in addition that the metric is bumpy, then the three-sphere contains at least 9 distinct embedded minimal tori. The proof relies on a multiplicity one theorem for the Simon-Smith min-max theory proved by the second author and X. Zhou.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信