{"title":"同质空间 $H\\times H/ ΔK$ 上非对角爱因斯坦度量的稳定性","authors":"Valeria Gutiérrez","doi":"arxiv-2409.10686","DOIUrl":null,"url":null,"abstract":"We consider the homogeneous space $M=H\\times H/\\Delta K$, where $H/K$ is an\nirreducible symmetric space and $\\Delta K$ denotes diagonal embedding.\nRecently, Lauret and Will provided a complete classification of $H\\times\nH$-invariant Einstein metrics on M. They obtained that there is always at least\none non-diagonal Einstein metric on $M$, and in some cases, diagonal Einstein\nmetrics also exist. We give a formula for the scalar curvature of a subset of\n$H\\times H$-invariant metrics and study the stability of non-diagonal Einstein\nmetrics on $M$ with respect to the Hilbert action, obtaining that these metrics\nare unstable with different coindexes for all homogeneous spaces $M$.","PeriodicalId":501113,"journal":{"name":"arXiv - MATH - Differential Geometry","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability of non-diagonal Einstein metrics on homogeneous spaces $H\\\\times H/ ΔK$\",\"authors\":\"Valeria Gutiérrez\",\"doi\":\"arxiv-2409.10686\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the homogeneous space $M=H\\\\times H/\\\\Delta K$, where $H/K$ is an\\nirreducible symmetric space and $\\\\Delta K$ denotes diagonal embedding.\\nRecently, Lauret and Will provided a complete classification of $H\\\\times\\nH$-invariant Einstein metrics on M. They obtained that there is always at least\\none non-diagonal Einstein metric on $M$, and in some cases, diagonal Einstein\\nmetrics also exist. We give a formula for the scalar curvature of a subset of\\n$H\\\\times H$-invariant metrics and study the stability of non-diagonal Einstein\\nmetrics on $M$ with respect to the Hilbert action, obtaining that these metrics\\nare unstable with different coindexes for all homogeneous spaces $M$.\",\"PeriodicalId\":501113,\"journal\":{\"name\":\"arXiv - MATH - Differential Geometry\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Differential Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10686\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10686","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Stability of non-diagonal Einstein metrics on homogeneous spaces $H\times H/ ΔK$
We consider the homogeneous space $M=H\times H/\Delta K$, where $H/K$ is an
irreducible symmetric space and $\Delta K$ denotes diagonal embedding.
Recently, Lauret and Will provided a complete classification of $H\times
H$-invariant Einstein metrics on M. They obtained that there is always at least
one non-diagonal Einstein metric on $M$, and in some cases, diagonal Einstein
metrics also exist. We give a formula for the scalar curvature of a subset of
$H\times H$-invariant metrics and study the stability of non-diagonal Einstein
metrics on $M$ with respect to the Hilbert action, obtaining that these metrics
are unstable with different coindexes for all homogeneous spaces $M$.