具有有限时间奇点的凯勒-里奇流的全局里奇曲率行为

Alexander Bednarek
{"title":"具有有限时间奇点的凯勒-里奇流的全局里奇曲率行为","authors":"Alexander Bednarek","doi":"arxiv-2409.11608","DOIUrl":null,"url":null,"abstract":"We consider the K\\\"ahler-Ricci flow $(X, \\omega(t))_{t \\in [0,T)}$ on a\ncompact manifold where the time of singularity, $T$, is finite. We assume the\nexistence of a holomorphic map from the K\\\"ahler manifold $X$ to some analytic\nvariety $Y$ which admits a K\\\"ahler metric on a neighbourhood of the image of\n$X$ and that the pullback of this metric yields the limiting cohomology class\nalong the flow. This is satisfied, for instance, by the assumption that the\ninitial cohomology class is rational, i.e., $[\\omega_0] \\in\nH^{1,1}(X,\\mathbb{Q})$. Under these assumptions we prove an $L^4$-like estimate\non the behaviour of the Ricci curvature and that the Riemannian curvature is\nType $I$ in the $L^2$-sense.","PeriodicalId":501113,"journal":{"name":"arXiv - MATH - Differential Geometry","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global Ricci Curvature Behaviour for the Kähler-Ricci Flow with Finite Time Singularities\",\"authors\":\"Alexander Bednarek\",\"doi\":\"arxiv-2409.11608\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the K\\\\\\\"ahler-Ricci flow $(X, \\\\omega(t))_{t \\\\in [0,T)}$ on a\\ncompact manifold where the time of singularity, $T$, is finite. We assume the\\nexistence of a holomorphic map from the K\\\\\\\"ahler manifold $X$ to some analytic\\nvariety $Y$ which admits a K\\\\\\\"ahler metric on a neighbourhood of the image of\\n$X$ and that the pullback of this metric yields the limiting cohomology class\\nalong the flow. This is satisfied, for instance, by the assumption that the\\ninitial cohomology class is rational, i.e., $[\\\\omega_0] \\\\in\\nH^{1,1}(X,\\\\mathbb{Q})$. Under these assumptions we prove an $L^4$-like estimate\\non the behaviour of the Ricci curvature and that the Riemannian curvature is\\nType $I$ in the $L^2$-sense.\",\"PeriodicalId\":501113,\"journal\":{\"name\":\"arXiv - MATH - Differential Geometry\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Differential Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11608\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11608","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑在奇点时间 $T$ 有限的紧凑流形上的 K\"ahler-Ricci 流 $(X, \omega(t))_{t \in [0,T)}$ 。我们假定存在一个从 K\"ahler 流形 $X$ 到某个解析变量 $Y$ 的全态映射,它在 $X$ 的像的邻域上允许一个 K\"ahler 度量,并且这个度量的回拉产生了沿流的极限同调类。例如,假设初始同调类是有理的,即$[\omega_0] \inH^{1,1}(X,\mathbb{Q})$ ,就可以满足这一点。在这些假设下,我们证明了关于黎氏曲率行为的类似于 $L^4$ 的估计,以及黎曼曲率在 $L^2$ 意义上是类型 $I$ 的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global Ricci Curvature Behaviour for the Kähler-Ricci Flow with Finite Time Singularities
We consider the K\"ahler-Ricci flow $(X, \omega(t))_{t \in [0,T)}$ on a compact manifold where the time of singularity, $T$, is finite. We assume the existence of a holomorphic map from the K\"ahler manifold $X$ to some analytic variety $Y$ which admits a K\"ahler metric on a neighbourhood of the image of $X$ and that the pullback of this metric yields the limiting cohomology class along the flow. This is satisfied, for instance, by the assumption that the initial cohomology class is rational, i.e., $[\omega_0] \in H^{1,1}(X,\mathbb{Q})$. Under these assumptions we prove an $L^4$-like estimate on the behaviour of the Ricci curvature and that the Riemannian curvature is Type $I$ in the $L^2$-sense.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信