用$C^{1,α}$ 多值函数对一类曲率变折的图形表示的修正证明

Nicolau S. Aiex
{"title":"用$C^{1,α}$ 多值函数对一类曲率变折的图形表示的修正证明","authors":"Nicolau S. Aiex","doi":"arxiv-2409.11861","DOIUrl":null,"url":null,"abstract":"We provide a counter-example to Hutchinson's original proof of $C^{1,\\alpha}$\nrepresentation of curvature $m$-varifolds with $L^q$-integrable second\nfundamental form and $q>m$ in [6]. We also provide an alternative proof of the\nsame result and introduce a method of decomposing varifolds into nested\ncomponents preserving weakly differentiability of a given function.\nFurthermore, we prove the structure theorem for curvature varifolds with null\nsecond fundamental form which is widely used in the literature.","PeriodicalId":501113,"journal":{"name":"arXiv - MATH - Differential Geometry","volume":"68 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Corrected Proof of the Graphical Representation of a Class of Curvature Varifolds by $C^{1,α}$ Multiple Valued Functions\",\"authors\":\"Nicolau S. Aiex\",\"doi\":\"arxiv-2409.11861\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We provide a counter-example to Hutchinson's original proof of $C^{1,\\\\alpha}$\\nrepresentation of curvature $m$-varifolds with $L^q$-integrable second\\nfundamental form and $q>m$ in [6]. We also provide an alternative proof of the\\nsame result and introduce a method of decomposing varifolds into nested\\ncomponents preserving weakly differentiability of a given function.\\nFurthermore, we prove the structure theorem for curvature varifolds with null\\nsecond fundamental form which is widely used in the literature.\",\"PeriodicalId\":501113,\"journal\":{\"name\":\"arXiv - MATH - Differential Geometry\",\"volume\":\"68 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Differential Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11861\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11861","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们为哈钦森在[6]中关于曲率$m$变曲的$C^{1,\alpha}$表示提供了一个反例,该变曲具有$L^q$可积分的次基本形式且$q>m$。此外,我们还证明了文献中广泛使用的具有空第二基本形式的曲率变分曲面的结构定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Corrected Proof of the Graphical Representation of a Class of Curvature Varifolds by $C^{1,α}$ Multiple Valued Functions
We provide a counter-example to Hutchinson's original proof of $C^{1,\alpha}$ representation of curvature $m$-varifolds with $L^q$-integrable second fundamental form and $q>m$ in [6]. We also provide an alternative proof of the same result and introduce a method of decomposing varifolds into nested components preserving weakly differentiability of a given function. Furthermore, we prove the structure theorem for curvature varifolds with null second fundamental form which is widely used in the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信