导航问题; $λ-$Funk 公设; 芬斯勒公设

Newton Solórzano, Víctor León, Alexandre Henrique, Marcelo Souza
{"title":"导航问题; $λ-$Funk 公设; 芬斯勒公设","authors":"Newton Solórzano, Víctor León, Alexandre Henrique, Marcelo Souza","doi":"arxiv-2409.12058","DOIUrl":null,"url":null,"abstract":"We investigate the travel time in a navigation problem from a geometric\nperspective. The setting involves an open subset of the Euclidean plane,\nrepresenting a lake perturbed by a symmetric wind flow proportional to the\ndistance from the origin. The Randers metric derived from this physical problem\ngeneralizes the well-known Euclidean metric on the Cartesian plane and the Funk\nmetric on the unit disk. We obtain formulas for distances, or travel times,\nfrom point to point, from point to line, and vice-versa","PeriodicalId":501113,"journal":{"name":"arXiv - MATH - Differential Geometry","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Navigation problem; $λ-$Funk metric; Finsler metric\",\"authors\":\"Newton Solórzano, Víctor León, Alexandre Henrique, Marcelo Souza\",\"doi\":\"arxiv-2409.12058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the travel time in a navigation problem from a geometric\\nperspective. The setting involves an open subset of the Euclidean plane,\\nrepresenting a lake perturbed by a symmetric wind flow proportional to the\\ndistance from the origin. The Randers metric derived from this physical problem\\ngeneralizes the well-known Euclidean metric on the Cartesian plane and the Funk\\nmetric on the unit disk. We obtain formulas for distances, or travel times,\\nfrom point to point, from point to line, and vice-versa\",\"PeriodicalId\":501113,\"journal\":{\"name\":\"arXiv - MATH - Differential Geometry\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Differential Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.12058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.12058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们从几何角度研究了导航问题中的旅行时间。该问题涉及欧几里得平面的一个开放子集,它代表了一个受到与离原点距离成正比的对称风流扰动的湖泊。从这个物理问题推导出的兰德斯度量概括了众所周知的笛卡尔平面上的欧几里得度量和单位圆盘上的丰度度量。我们得到了点到点、点到线、反之亦然的距离或旅行时间公式
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Navigation problem; $λ-$Funk metric; Finsler metric
We investigate the travel time in a navigation problem from a geometric perspective. The setting involves an open subset of the Euclidean plane, representing a lake perturbed by a symmetric wind flow proportional to the distance from the origin. The Randers metric derived from this physical problem generalizes the well-known Euclidean metric on the Cartesian plane and the Funk metric on the unit disk. We obtain formulas for distances, or travel times, from point to point, from point to line, and vice-versa
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信