编织和非编织 CFRP 复合材料/钢螺栓连接的渐进失效分析

IF 4.8 2区 材料科学 Q2 MATERIALS SCIENCE, COMPOSITES
Alaa El-Din A. El-Sisi, Hani A. Salim, Shady A. Gomaa, Mohamed H. El-Feky
{"title":"编织和非编织 CFRP 复合材料/钢螺栓连接的渐进失效分析","authors":"Alaa El-Din A. El-Sisi, Hani A. Salim, Shady A. Gomaa, Mohamed H. El-Feky","doi":"10.1002/pc.29051","DOIUrl":null,"url":null,"abstract":"Due to recent advancements in textile fabrication, woven fabric reinforcements are used in composite structures as an alternative to traditional unidirectional fiber reinforcing layups. In this paper, experimental work was performed to study the behavior of multiple bolt-lapped joints under uniaxial tension. Different bolt numbers, composite layups, and fabric configurations were studied. Single- and double-lap configurations were used to investigate the effect of secondary stresses. It was found that the P-δ curves of lapped joints exhibit four primary stages: a linear elastic stage, followed by a nonlinear hardening stage, then linear hardening leading up to the peak, and finally a softening stage. For double-lapped non-woven joints, the curves encompass only the first three stages; however, for woven composites, the last stage is very small. In addition, among the laminates, the non-woven laminate sustains the highest normalized failure load, except in the staggered case, where the quasi-isotropic woven laminate exhibits higher strength. Conversely, the bidirectional woven laminate demonstrates the lowest loads and the highest deformation.","PeriodicalId":20375,"journal":{"name":"Polymer Composites","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Progressive failure analysis of woven and non-woven CFRP composite/steel bolted joints\",\"authors\":\"Alaa El-Din A. El-Sisi, Hani A. Salim, Shady A. Gomaa, Mohamed H. El-Feky\",\"doi\":\"10.1002/pc.29051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to recent advancements in textile fabrication, woven fabric reinforcements are used in composite structures as an alternative to traditional unidirectional fiber reinforcing layups. In this paper, experimental work was performed to study the behavior of multiple bolt-lapped joints under uniaxial tension. Different bolt numbers, composite layups, and fabric configurations were studied. Single- and double-lap configurations were used to investigate the effect of secondary stresses. It was found that the P-δ curves of lapped joints exhibit four primary stages: a linear elastic stage, followed by a nonlinear hardening stage, then linear hardening leading up to the peak, and finally a softening stage. For double-lapped non-woven joints, the curves encompass only the first three stages; however, for woven composites, the last stage is very small. In addition, among the laminates, the non-woven laminate sustains the highest normalized failure load, except in the staggered case, where the quasi-isotropic woven laminate exhibits higher strength. Conversely, the bidirectional woven laminate demonstrates the lowest loads and the highest deformation.\",\"PeriodicalId\":20375,\"journal\":{\"name\":\"Polymer Composites\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Composites\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/pc.29051\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Composites","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/pc.29051","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

由于近年来纺织品制造技术的进步,复合材料结构中使用了编织物加固,以替代传统的单向纤维加固层。本文通过实验研究了单轴拉伸下多螺栓连接的行为。研究了不同的螺栓数量、复合层叠和织物配置。使用单搭接和双搭接配置来研究次应力的影响。研究发现,搭接接头的 P-δ 曲线表现出四个主要阶段:线性弹性阶段,随后是非线性硬化阶段,然后是达到峰值的线性硬化阶段,最后是软化阶段。对于双层无纺布接头,曲线只包括前三个阶段;但对于编织复合材料,最后一个阶段非常小。此外,在层压材料中,无纺布层压材料承受的归一化破坏载荷最高,但交错情况除外,在交错情况下,准各向同性编织层压材料的强度更高。相反,双向编织层压板承受的载荷最小,变形量最大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Progressive failure analysis of woven and non-woven CFRP composite/steel bolted joints

Progressive failure analysis of woven and non-woven CFRP composite/steel bolted joints
Due to recent advancements in textile fabrication, woven fabric reinforcements are used in composite structures as an alternative to traditional unidirectional fiber reinforcing layups. In this paper, experimental work was performed to study the behavior of multiple bolt-lapped joints under uniaxial tension. Different bolt numbers, composite layups, and fabric configurations were studied. Single- and double-lap configurations were used to investigate the effect of secondary stresses. It was found that the P-δ curves of lapped joints exhibit four primary stages: a linear elastic stage, followed by a nonlinear hardening stage, then linear hardening leading up to the peak, and finally a softening stage. For double-lapped non-woven joints, the curves encompass only the first three stages; however, for woven composites, the last stage is very small. In addition, among the laminates, the non-woven laminate sustains the highest normalized failure load, except in the staggered case, where the quasi-isotropic woven laminate exhibits higher strength. Conversely, the bidirectional woven laminate demonstrates the lowest loads and the highest deformation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polymer Composites
Polymer Composites 工程技术-材料科学:复合
CiteScore
7.50
自引率
32.70%
发文量
673
审稿时长
3.1 months
期刊介绍: Polymer Composites is the engineering and scientific journal serving the fields of reinforced plastics and polymer composites including research, production, processing, and applications. PC brings you the details of developments in this rapidly expanding area of technology long before they are commercial realities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信