PSL$(2,\mathbb{C})$中的简单传递测地线和网格全能性

Ian Agol, Tam Cheetham-West, Yair Minsky
{"title":"PSL$(2,\\mathbb{C})$中的简单传递测地线和网格全能性","authors":"Ian Agol, Tam Cheetham-West, Yair Minsky","doi":"arxiv-2409.08418","DOIUrl":null,"url":null,"abstract":"We show that the isometry group of a finite-volume hyperbolic 3-manifold acts\nsimply transitively on many of its closed geodesics. Combining this observation\nwith the Virtual Special Theorems of the first author and Wise, we show that\nevery non-arithmetic lattice in PSL$(2,\\mathbb{C})$ is the full group of\norientation-preserving isometries for some other lattice and that the\norientation-preserving isometry group of a finite-volume hyperbolic 3-manifold\nacts non-trivially on the homology of some finite-sheeted cover.","PeriodicalId":501037,"journal":{"name":"arXiv - MATH - Group Theory","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simply transitive geodesics and omnipotence of lattices in PSL$(2,\\\\mathbb{C})$\",\"authors\":\"Ian Agol, Tam Cheetham-West, Yair Minsky\",\"doi\":\"arxiv-2409.08418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that the isometry group of a finite-volume hyperbolic 3-manifold acts\\nsimply transitively on many of its closed geodesics. Combining this observation\\nwith the Virtual Special Theorems of the first author and Wise, we show that\\nevery non-arithmetic lattice in PSL$(2,\\\\mathbb{C})$ is the full group of\\norientation-preserving isometries for some other lattice and that the\\norientation-preserving isometry group of a finite-volume hyperbolic 3-manifold\\nacts non-trivially on the homology of some finite-sheeted cover.\",\"PeriodicalId\":501037,\"journal\":{\"name\":\"arXiv - MATH - Group Theory\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Group Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08418\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了有限体积双曲 3-manifold的等测群在其许多闭合测地线上简单地起传递作用。将这一观察与第一作者和怀斯的虚拟特殊定理相结合,我们证明了 PSL$(2,\mathbb{C})$中的每一个非算术晶格都是某些其他晶格的方向保留等轴线的全群,并且有限体积双曲 3-manifold的方向保留等轴线群非直向地作用于某些有限片盖的同调上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simply transitive geodesics and omnipotence of lattices in PSL$(2,\mathbb{C})$
We show that the isometry group of a finite-volume hyperbolic 3-manifold acts simply transitively on many of its closed geodesics. Combining this observation with the Virtual Special Theorems of the first author and Wise, we show that every non-arithmetic lattice in PSL$(2,\mathbb{C})$ is the full group of orientation-preserving isometries for some other lattice and that the orientation-preserving isometry group of a finite-volume hyperbolic 3-manifold acts non-trivially on the homology of some finite-sheeted cover.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信