A$ 群的一些特殊品种中的群枚举

Arushi, Geetha Venkataraman
{"title":"A$ 群的一些特殊品种中的群枚举","authors":"Arushi, Geetha Venkataraman","doi":"arxiv-2409.08586","DOIUrl":null,"url":null,"abstract":"We find an upper bound for the number of groups of order $n$ up to\nisomorphism in the variety $G = A_pA_qA_r$, where $p$, $q$ and $r$ are distinct\nprimes. We also find a bound on the orders and on the number of conjugacy\nclasses of subgroups that are maximal amongst the subgroups of the general\nlinear group that are also in the variety $A_qA_r$.","PeriodicalId":501037,"journal":{"name":"arXiv - MATH - Group Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enumeration of groups in some special varieties of $A$-groups\",\"authors\":\"Arushi, Geetha Venkataraman\",\"doi\":\"arxiv-2409.08586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We find an upper bound for the number of groups of order $n$ up to\\nisomorphism in the variety $G = A_pA_qA_r$, where $p$, $q$ and $r$ are distinct\\nprimes. We also find a bound on the orders and on the number of conjugacy\\nclasses of subgroups that are maximal amongst the subgroups of the general\\nlinear group that are also in the variety $A_qA_r$.\",\"PeriodicalId\":501037,\"journal\":{\"name\":\"arXiv - MATH - Group Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Group Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08586\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们发现了在 $G = A_pA_qA_r$(其中 $p$、$q$ 和 $r$ 是不同的素数)中阶数 $n$ 直至同构的群的数量上限。我们还发现了一个关于阶数和子群共轭类数的约束,这些子群在同在 $A_qA_r$ 中的泛线性群的子群中是最大的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enumeration of groups in some special varieties of $A$-groups
We find an upper bound for the number of groups of order $n$ up to isomorphism in the variety $G = A_pA_qA_r$, where $p$, $q$ and $r$ are distinct primes. We also find a bound on the orders and on the number of conjugacy classes of subgroups that are maximal amongst the subgroups of the general linear group that are also in the variety $A_qA_r$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信