离散群融合系统的可实现性

Carles Broto, Ran Levi, Bob Oliver
{"title":"离散群融合系统的可实现性","authors":"Carles Broto, Ran Levi, Bob Oliver","doi":"arxiv-2409.09703","DOIUrl":null,"url":null,"abstract":"For a prime $p$, fusion systems over discrete $p$-toral groups are categories\nthat model and generalize the $p$-local structure of Lie groups and certain\nother infinite groups in the same way that fusion systems over finite\n$p$-groups model and generalize the $p$-local structure of finite groups. In\nthe finite case, it is natural to say that a fusion system $\\mathcal{F}$ is\nrealizable if it is isomorphic to the fusion system of a finite group, but it\nis less clear what realizability should mean in the discrete $p$-toral case. In this paper, we look at some of the different types of realizability for\nfusion systems over discrete $p$-toral groups, including realizability by\nlinear torsion groups and sequential realizability, of which the latter is the\nmost general. After showing that fusion systems of compact Lie groups are\nalways realized by linear torsion groups (hence sequentially realizable), we\ngive some new tools for showing that certain fusion systems are not\nsequentially realizable, and illustrate it with two large families of examples.","PeriodicalId":501037,"journal":{"name":"arXiv - MATH - Group Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Realizability of fusion systems by discrete groups\",\"authors\":\"Carles Broto, Ran Levi, Bob Oliver\",\"doi\":\"arxiv-2409.09703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a prime $p$, fusion systems over discrete $p$-toral groups are categories\\nthat model and generalize the $p$-local structure of Lie groups and certain\\nother infinite groups in the same way that fusion systems over finite\\n$p$-groups model and generalize the $p$-local structure of finite groups. In\\nthe finite case, it is natural to say that a fusion system $\\\\mathcal{F}$ is\\nrealizable if it is isomorphic to the fusion system of a finite group, but it\\nis less clear what realizability should mean in the discrete $p$-toral case. In this paper, we look at some of the different types of realizability for\\nfusion systems over discrete $p$-toral groups, including realizability by\\nlinear torsion groups and sequential realizability, of which the latter is the\\nmost general. After showing that fusion systems of compact Lie groups are\\nalways realized by linear torsion groups (hence sequentially realizable), we\\ngive some new tools for showing that certain fusion systems are not\\nsequentially realizable, and illustrate it with two large families of examples.\",\"PeriodicalId\":501037,\"journal\":{\"name\":\"arXiv - MATH - Group Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Group Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09703\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于素数$p$而言,离散的$p$群上的融合系统是模拟和概括了李群和某些其他无限群的$p$局部结构的范畴,就像有限的$p$群上的融合系统模拟和概括了有限群的$p$局部结构一样。在有限群的情况下,如果一个融合系统 $mathcal{F}$ 与有限群的融合系统同构,那么很自然地说这个融合系统 $mathcal{F}$ 是可实现的,但在离散 $p$ 群的情况下,可实现性的含义就不那么清楚了。在本文中,我们研究了离散 p$ 道尔群上的融合系统的一些不同类型的可实现性,包括线性扭转群的可实现性和顺序可实现性,后者是最一般的可实现性。在证明了紧凑李群的融合系统总是由线性扭转群实现(因此是顺序可实现的)之后,我们给出了一些新工具来证明某些融合系统不是顺序可实现的,并用两大家族的例子进行了说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Realizability of fusion systems by discrete groups
For a prime $p$, fusion systems over discrete $p$-toral groups are categories that model and generalize the $p$-local structure of Lie groups and certain other infinite groups in the same way that fusion systems over finite $p$-groups model and generalize the $p$-local structure of finite groups. In the finite case, it is natural to say that a fusion system $\mathcal{F}$ is realizable if it is isomorphic to the fusion system of a finite group, but it is less clear what realizability should mean in the discrete $p$-toral case. In this paper, we look at some of the different types of realizability for fusion systems over discrete $p$-toral groups, including realizability by linear torsion groups and sequential realizability, of which the latter is the most general. After showing that fusion systems of compact Lie groups are always realized by linear torsion groups (hence sequentially realizable), we give some new tools for showing that certain fusion systems are not sequentially realizable, and illustrate it with two large families of examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信