关于正常子群的 $G$ 字符表

María José Felipe, María Dolores Pérez-Ramos, Víctor Sotomayor
{"title":"关于正常子群的 $G$ 字符表","authors":"María José Felipe, María Dolores Pérez-Ramos, Víctor Sotomayor","doi":"arxiv-2409.11591","DOIUrl":null,"url":null,"abstract":"Let $N$ be a normal subgroup of a finite group $G$. From a result due to\nBrauer, it can be derived that the character table of $G$ contains square\nsubmatrices which are induced by the $G$-conjugacy classes of elements in $N$\nand the $G$-orbits of irreducible characters of $N$. In the present paper, we\nprovide an alternative approach to this fact through the structure of the group\nalgebra. We also show that such matrices are non-singular and become a useful\ntool to obtain information of $N$ from the character table of $G$.","PeriodicalId":501037,"journal":{"name":"arXiv - MATH - Group Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On $G$-character tables for normal subgroups\",\"authors\":\"María José Felipe, María Dolores Pérez-Ramos, Víctor Sotomayor\",\"doi\":\"arxiv-2409.11591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $N$ be a normal subgroup of a finite group $G$. From a result due to\\nBrauer, it can be derived that the character table of $G$ contains square\\nsubmatrices which are induced by the $G$-conjugacy classes of elements in $N$\\nand the $G$-orbits of irreducible characters of $N$. In the present paper, we\\nprovide an alternative approach to this fact through the structure of the group\\nalgebra. We also show that such matrices are non-singular and become a useful\\ntool to obtain information of $N$ from the character table of $G$.\",\"PeriodicalId\":501037,\"journal\":{\"name\":\"arXiv - MATH - Group Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Group Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11591\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设 $N$ 是有限群 $G$ 的正则子群。根据布劳尔(Brauer)的一个结果,可以推导出 $G$ 的字符表包含由 $N$ 中元素的 $G$ 共轭类和 $N$ 不可还原字符的 $G$ 轴所诱导的平方次矩阵。在本文中,我们通过群代数的结构为这一事实提供了另一种方法。我们还证明了这种矩阵是非奇异矩阵,并成为从 $G$ 字符表中获取 $N$ 信息的有用工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On $G$-character tables for normal subgroups
Let $N$ be a normal subgroup of a finite group $G$. From a result due to Brauer, it can be derived that the character table of $G$ contains square submatrices which are induced by the $G$-conjugacy classes of elements in $N$ and the $G$-orbits of irreducible characters of $N$. In the present paper, we provide an alternative approach to this fact through the structure of the group algebra. We also show that such matrices are non-singular and become a useful tool to obtain information of $N$ from the character table of $G$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信