Jesús Alonso Ochoa Arango, María Angélica Umbarila Martín
{"title":"论有限群的精确因式分解数","authors":"Jesús Alonso Ochoa Arango, María Angélica Umbarila Martín","doi":"arxiv-2409.10428","DOIUrl":null,"url":null,"abstract":"In this work, we study the function $f_2(G)$ that counts the number of exact\nfactorizations of a finite group $G$. We compute $f_2(G)$ for some well-known\nfamilies of finite groups and use the results of Wiegold and Williamson\n\\cite{WW} to derive an asymptotic expression for the number of exact\nfactorizations of the alternating group $A_{2^n}$. Finally, we propose several\nquestions about the function $f_2(G)$ that may be of interest for further\nresearch.","PeriodicalId":501037,"journal":{"name":"arXiv - MATH - Group Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the number of exact factorization of finite Groups\",\"authors\":\"Jesús Alonso Ochoa Arango, María Angélica Umbarila Martín\",\"doi\":\"arxiv-2409.10428\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we study the function $f_2(G)$ that counts the number of exact\\nfactorizations of a finite group $G$. We compute $f_2(G)$ for some well-known\\nfamilies of finite groups and use the results of Wiegold and Williamson\\n\\\\cite{WW} to derive an asymptotic expression for the number of exact\\nfactorizations of the alternating group $A_{2^n}$. Finally, we propose several\\nquestions about the function $f_2(G)$ that may be of interest for further\\nresearch.\",\"PeriodicalId\":501037,\"journal\":{\"name\":\"arXiv - MATH - Group Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Group Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10428\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10428","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the number of exact factorization of finite Groups
In this work, we study the function $f_2(G)$ that counts the number of exact
factorizations of a finite group $G$. We compute $f_2(G)$ for some well-known
families of finite groups and use the results of Wiegold and Williamson
\cite{WW} to derive an asymptotic expression for the number of exact
factorizations of the alternating group $A_{2^n}$. Finally, we propose several
questions about the function $f_2(G)$ that may be of interest for further
research.