论有限群的精确因式分解数

Jesús Alonso Ochoa Arango, María Angélica Umbarila Martín
{"title":"论有限群的精确因式分解数","authors":"Jesús Alonso Ochoa Arango, María Angélica Umbarila Martín","doi":"arxiv-2409.10428","DOIUrl":null,"url":null,"abstract":"In this work, we study the function $f_2(G)$ that counts the number of exact\nfactorizations of a finite group $G$. We compute $f_2(G)$ for some well-known\nfamilies of finite groups and use the results of Wiegold and Williamson\n\\cite{WW} to derive an asymptotic expression for the number of exact\nfactorizations of the alternating group $A_{2^n}$. Finally, we propose several\nquestions about the function $f_2(G)$ that may be of interest for further\nresearch.","PeriodicalId":501037,"journal":{"name":"arXiv - MATH - Group Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the number of exact factorization of finite Groups\",\"authors\":\"Jesús Alonso Ochoa Arango, María Angélica Umbarila Martín\",\"doi\":\"arxiv-2409.10428\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we study the function $f_2(G)$ that counts the number of exact\\nfactorizations of a finite group $G$. We compute $f_2(G)$ for some well-known\\nfamilies of finite groups and use the results of Wiegold and Williamson\\n\\\\cite{WW} to derive an asymptotic expression for the number of exact\\nfactorizations of the alternating group $A_{2^n}$. Finally, we propose several\\nquestions about the function $f_2(G)$ that may be of interest for further\\nresearch.\",\"PeriodicalId\":501037,\"journal\":{\"name\":\"arXiv - MATH - Group Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Group Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10428\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10428","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们研究了计算有限群 $G$ 的精确因子化次数的函数 $f_2(G)$。我们计算了一些众所周知的有限群族的 $f_2(G)$,并利用维戈尔德和威廉姆森的结果推导出交替群 $A_{2^n}$ 的精确因子化次数的渐近表达式。最后,我们提出了几个关于函数 $f_2(G)$ 的问题,这些问题可能会引起进一步研究的兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the number of exact factorization of finite Groups
In this work, we study the function $f_2(G)$ that counts the number of exact factorizations of a finite group $G$. We compute $f_2(G)$ for some well-known families of finite groups and use the results of Wiegold and Williamson \cite{WW} to derive an asymptotic expression for the number of exact factorizations of the alternating group $A_{2^n}$. Finally, we propose several questions about the function $f_2(G)$ that may be of interest for further research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信