{"title":"无限群 Sylow 子群的换向概率","authors":"Eloisa Detomi, Marta Morigi, Pavel Shumyatsky","doi":"arxiv-2409.11165","DOIUrl":null,"url":null,"abstract":"Given two subgroups $H,K$ of a compact group $G$, the probability that a\nrandom element of $H$ commutes with a random element of $K$ is denoted by\n$Pr(H,K)$. We show that if $G$ is a profinite group containing a Sylow $2$-subgroup $P$,\na Sylow $3$-subgroup $Q_3$ and a Sylow $5$-subgroup $Q_5$ such that $Pr(P,Q_3)$\nand $Pr(P,Q_5)$ are both positive, then $G$ is virtually prosoluble (Theorem\n1.1). Furthermore, if $G$ is a prosoluble group in which for every subset\n$\\pi\\subseteq\\pi(G)$ there is a Hall $\\pi$-subgroup $H_\\pi$ and a Hall\n$\\pi'$-subgroup $H_{\\pi'}$ such that $Pr(H_\\pi,H_{\\pi'})>0$, then $G$ is\nvirtually pronilpotent (Theorem 1.2).","PeriodicalId":501037,"journal":{"name":"arXiv - MATH - Group Theory","volume":"187 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Commuting probability for the Sylow subgroups of a profinite group\",\"authors\":\"Eloisa Detomi, Marta Morigi, Pavel Shumyatsky\",\"doi\":\"arxiv-2409.11165\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given two subgroups $H,K$ of a compact group $G$, the probability that a\\nrandom element of $H$ commutes with a random element of $K$ is denoted by\\n$Pr(H,K)$. We show that if $G$ is a profinite group containing a Sylow $2$-subgroup $P$,\\na Sylow $3$-subgroup $Q_3$ and a Sylow $5$-subgroup $Q_5$ such that $Pr(P,Q_3)$\\nand $Pr(P,Q_5)$ are both positive, then $G$ is virtually prosoluble (Theorem\\n1.1). Furthermore, if $G$ is a prosoluble group in which for every subset\\n$\\\\pi\\\\subseteq\\\\pi(G)$ there is a Hall $\\\\pi$-subgroup $H_\\\\pi$ and a Hall\\n$\\\\pi'$-subgroup $H_{\\\\pi'}$ such that $Pr(H_\\\\pi,H_{\\\\pi'})>0$, then $G$ is\\nvirtually pronilpotent (Theorem 1.2).\",\"PeriodicalId\":501037,\"journal\":{\"name\":\"arXiv - MATH - Group Theory\",\"volume\":\"187 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Group Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11165\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Commuting probability for the Sylow subgroups of a profinite group
Given two subgroups $H,K$ of a compact group $G$, the probability that a
random element of $H$ commutes with a random element of $K$ is denoted by
$Pr(H,K)$. We show that if $G$ is a profinite group containing a Sylow $2$-subgroup $P$,
a Sylow $3$-subgroup $Q_3$ and a Sylow $5$-subgroup $Q_5$ such that $Pr(P,Q_3)$
and $Pr(P,Q_5)$ are both positive, then $G$ is virtually prosoluble (Theorem
1.1). Furthermore, if $G$ is a prosoluble group in which for every subset
$\pi\subseteq\pi(G)$ there is a Hall $\pi$-subgroup $H_\pi$ and a Hall
$\pi'$-subgroup $H_{\pi'}$ such that $Pr(H_\pi,H_{\pi'})>0$, then $G$ is
virtually pronilpotent (Theorem 1.2).