无限群 Sylow 子群的换向概率

Eloisa Detomi, Marta Morigi, Pavel Shumyatsky
{"title":"无限群 Sylow 子群的换向概率","authors":"Eloisa Detomi, Marta Morigi, Pavel Shumyatsky","doi":"arxiv-2409.11165","DOIUrl":null,"url":null,"abstract":"Given two subgroups $H,K$ of a compact group $G$, the probability that a\nrandom element of $H$ commutes with a random element of $K$ is denoted by\n$Pr(H,K)$. We show that if $G$ is a profinite group containing a Sylow $2$-subgroup $P$,\na Sylow $3$-subgroup $Q_3$ and a Sylow $5$-subgroup $Q_5$ such that $Pr(P,Q_3)$\nand $Pr(P,Q_5)$ are both positive, then $G$ is virtually prosoluble (Theorem\n1.1). Furthermore, if $G$ is a prosoluble group in which for every subset\n$\\pi\\subseteq\\pi(G)$ there is a Hall $\\pi$-subgroup $H_\\pi$ and a Hall\n$\\pi'$-subgroup $H_{\\pi'}$ such that $Pr(H_\\pi,H_{\\pi'})>0$, then $G$ is\nvirtually pronilpotent (Theorem 1.2).","PeriodicalId":501037,"journal":{"name":"arXiv - MATH - Group Theory","volume":"187 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Commuting probability for the Sylow subgroups of a profinite group\",\"authors\":\"Eloisa Detomi, Marta Morigi, Pavel Shumyatsky\",\"doi\":\"arxiv-2409.11165\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given two subgroups $H,K$ of a compact group $G$, the probability that a\\nrandom element of $H$ commutes with a random element of $K$ is denoted by\\n$Pr(H,K)$. We show that if $G$ is a profinite group containing a Sylow $2$-subgroup $P$,\\na Sylow $3$-subgroup $Q_3$ and a Sylow $5$-subgroup $Q_5$ such that $Pr(P,Q_3)$\\nand $Pr(P,Q_5)$ are both positive, then $G$ is virtually prosoluble (Theorem\\n1.1). Furthermore, if $G$ is a prosoluble group in which for every subset\\n$\\\\pi\\\\subseteq\\\\pi(G)$ there is a Hall $\\\\pi$-subgroup $H_\\\\pi$ and a Hall\\n$\\\\pi'$-subgroup $H_{\\\\pi'}$ such that $Pr(H_\\\\pi,H_{\\\\pi'})>0$, then $G$ is\\nvirtually pronilpotent (Theorem 1.2).\",\"PeriodicalId\":501037,\"journal\":{\"name\":\"arXiv - MATH - Group Theory\",\"volume\":\"187 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Group Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11165\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

给定紧凑群$G$的两个子群$H,K$,$H$的随机元素与$K$的随机元素相交的概率用$Pr(H,K)$表示。我们证明,如果 $G$ 是一个包含一个 Sylow 2$ 子群 $P$、一个 Sylow 3$ 子群 $Q_3$ 和一个 Sylow 5$ 子群 $Q_5$ 的无限群,且 $Pr(P,Q_3)$ 和 $Pr(P,Q_5)$ 均为正值,那么 $G$ 实际上是可原溶的(定理 1.1)。此外,如果 $G$ 是一个可原溶群,其中对于每个子集$\pi\subseteq\pi(G)$都有一个霍尔$\pi$子群$H_\pi$和一个霍尔$\pi'$子群$H_{\pi'}$,使得$Pr(H_\pi,H_{\pi'})>0$,那么 $G$ 实际上是代potent 的(定理 1.2)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Commuting probability for the Sylow subgroups of a profinite group
Given two subgroups $H,K$ of a compact group $G$, the probability that a random element of $H$ commutes with a random element of $K$ is denoted by $Pr(H,K)$. We show that if $G$ is a profinite group containing a Sylow $2$-subgroup $P$, a Sylow $3$-subgroup $Q_3$ and a Sylow $5$-subgroup $Q_5$ such that $Pr(P,Q_3)$ and $Pr(P,Q_5)$ are both positive, then $G$ is virtually prosoluble (Theorem 1.1). Furthermore, if $G$ is a prosoluble group in which for every subset $\pi\subseteq\pi(G)$ there is a Hall $\pi$-subgroup $H_\pi$ and a Hall $\pi'$-subgroup $H_{\pi'}$ such that $Pr(H_\pi,H_{\pi'})>0$, then $G$ is virtually pronilpotent (Theorem 1.2).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信