论有限连接群方案的收回合理性

Shusuke Otabe
{"title":"论有限连接群方案的收回合理性","authors":"Shusuke Otabe","doi":"arxiv-2409.08604","DOIUrl":null,"url":null,"abstract":"In the present paper, we prove the retract rationality of the classifying\nspaces $BG$ for several types of finite connected group schemes $G$ over\nalgebraically closed fields $k$ of positive characteristic $p>0$. In\nparticular, we prove the retract rationality for the finite simple group\nschemes $G$ associated with the generalized Witt algebras in specific cases. To\nthis end, we study the automorphism group schemes of the generalized Witt\nalgebras and establish triangulations for them. Moreover, we extend the notion\nof Witt--Ree algebra to general base rings and discuss their properties.","PeriodicalId":501038,"journal":{"name":"arXiv - MATH - Representation Theory","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On retract rationality for finite connected group schemes\",\"authors\":\"Shusuke Otabe\",\"doi\":\"arxiv-2409.08604\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present paper, we prove the retract rationality of the classifying\\nspaces $BG$ for several types of finite connected group schemes $G$ over\\nalgebraically closed fields $k$ of positive characteristic $p>0$. In\\nparticular, we prove the retract rationality for the finite simple group\\nschemes $G$ associated with the generalized Witt algebras in specific cases. To\\nthis end, we study the automorphism group schemes of the generalized Witt\\nalgebras and establish triangulations for them. Moreover, we extend the notion\\nof Witt--Ree algebra to general base rings and discuss their properties.\",\"PeriodicalId\":501038,\"journal\":{\"name\":\"arXiv - MATH - Representation Theory\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Representation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08604\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08604","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们证明了几种类型的有限连接群方案 $G$ 在正特征 $p>0$ 的代数闭域 $k$ 上的分类空间 $BG$ 的收回合理性。特别是,我们证明了在特定情况下与广义维特代数相关的有限简单群方案 $G$ 的收回合理性。为此,我们研究了广义维特格拉的自变群方案,并建立了它们的三角剖分。此外,我们还将维特里代数的概念扩展到一般基环,并讨论了它们的性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On retract rationality for finite connected group schemes
In the present paper, we prove the retract rationality of the classifying spaces $BG$ for several types of finite connected group schemes $G$ over algebraically closed fields $k$ of positive characteristic $p>0$. In particular, we prove the retract rationality for the finite simple group schemes $G$ associated with the generalized Witt algebras in specific cases. To this end, we study the automorphism group schemes of the generalized Witt algebras and establish triangulations for them. Moreover, we extend the notion of Witt--Ree algebra to general base rings and discuss their properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信