局部温柔代数的同调条件

S. Ford, A. Oswald, J. J. Zhang
{"title":"局部温柔代数的同调条件","authors":"S. Ford, A. Oswald, J. J. Zhang","doi":"arxiv-2409.08333","DOIUrl":null,"url":null,"abstract":"Gentle algebras are a class of special biserial algebra whose representation\ntheory has been thoroughly described. In this paper, we consider the infinite\ndimensional generalizations of gentle algebras, referred to as locally gentle\nalgebras. We give combinatorial descriptions of the center, spectrum, and\nhomological dimensions of a locally gentle algebra, including an explicit\ninjective resolution. We classify when these algebras are Artin-Schelter\nGorenstein, Artin-Schelter regular, and Cohen-Macaulay, and provide an analogue\nof Stanley's theorem for locally gentle algebras.","PeriodicalId":501038,"journal":{"name":"arXiv - MATH - Representation Theory","volume":"201 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Homological conditions on locally gentle algebras\",\"authors\":\"S. Ford, A. Oswald, J. J. Zhang\",\"doi\":\"arxiv-2409.08333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gentle algebras are a class of special biserial algebra whose representation\\ntheory has been thoroughly described. In this paper, we consider the infinite\\ndimensional generalizations of gentle algebras, referred to as locally gentle\\nalgebras. We give combinatorial descriptions of the center, spectrum, and\\nhomological dimensions of a locally gentle algebra, including an explicit\\ninjective resolution. We classify when these algebras are Artin-Schelter\\nGorenstein, Artin-Schelter regular, and Cohen-Macaulay, and provide an analogue\\nof Stanley's theorem for locally gentle algebras.\",\"PeriodicalId\":501038,\"journal\":{\"name\":\"arXiv - MATH - Representation Theory\",\"volume\":\"201 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Representation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08333\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

温柔代数是一类特殊的双星代数,其表示理论已被彻底描述。在本文中,我们考虑了温柔代数的无穷维广义,即局部温柔代数。我们给出了局部温和代数的中心、谱和本构维数的组合描述,包括明确的注入解析。我们对这些代数的Artin-SchelterGorenstein、Artin-Schelter正则和Cohen-Macaulay进行了分类,并给出了局部温和代数的斯坦利定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Homological conditions on locally gentle algebras
Gentle algebras are a class of special biserial algebra whose representation theory has been thoroughly described. In this paper, we consider the infinite dimensional generalizations of gentle algebras, referred to as locally gentle algebras. We give combinatorial descriptions of the center, spectrum, and homological dimensions of a locally gentle algebra, including an explicit injective resolution. We classify when these algebras are Artin-Schelter Gorenstein, Artin-Schelter regular, and Cohen-Macaulay, and provide an analogue of Stanley's theorem for locally gentle algebras.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信