论大小固定的复合物类别中的度数

Claudia Chaio, Isabel Pratti, Maria Jose Souto
{"title":"论大小固定的复合物类别中的度数","authors":"Claudia Chaio, Isabel Pratti, Maria Jose Souto","doi":"arxiv-2409.08758","DOIUrl":null,"url":null,"abstract":"We consider $\\Lambda$ an artin algebra and $n \\geq 2$. We study how to\ncompute the left and right degrees of irreducible morphisms between complexes\nin a generalized standard Auslander-Reiten component of ${\\mathbf{C_n}({\\rm\nproj}\\, \\Lambda)}$ with length. We give conditions under which the kernel and\nthe cokernel of irreducible morphisms between complexes in $\\mathbf{C_n}({\\rm\nproj}\\, \\Lambda)$ belong to such a category. For a finite dimensional\nhereditary algebra $H$ over an algebraically closed field, we determine when an\nirreducible morphism has finite left (or right) degree and we give a\ncharacterization, depending on the degrees of certain irreducible morphisms,\nunder which $\\mathbf{C_n}({\\rm proj} \\,H)$ is of finite type.","PeriodicalId":501038,"journal":{"name":"arXiv - MATH - Representation Theory","volume":"63 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the degree in categories of complexes of fixed size\",\"authors\":\"Claudia Chaio, Isabel Pratti, Maria Jose Souto\",\"doi\":\"arxiv-2409.08758\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider $\\\\Lambda$ an artin algebra and $n \\\\geq 2$. We study how to\\ncompute the left and right degrees of irreducible morphisms between complexes\\nin a generalized standard Auslander-Reiten component of ${\\\\mathbf{C_n}({\\\\rm\\nproj}\\\\, \\\\Lambda)}$ with length. We give conditions under which the kernel and\\nthe cokernel of irreducible morphisms between complexes in $\\\\mathbf{C_n}({\\\\rm\\nproj}\\\\, \\\\Lambda)$ belong to such a category. For a finite dimensional\\nhereditary algebra $H$ over an algebraically closed field, we determine when an\\nirreducible morphism has finite left (or right) degree and we give a\\ncharacterization, depending on the degrees of certain irreducible morphisms,\\nunder which $\\\\mathbf{C_n}({\\\\rm proj} \\\\,H)$ is of finite type.\",\"PeriodicalId\":501038,\"journal\":{\"name\":\"arXiv - MATH - Representation Theory\",\"volume\":\"63 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Representation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08758\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08758","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们认为 $\Lambda$ 是一个阿尔金代数,并且 $n \geq 2$.我们研究了如何计算有长度的${mathbf{C_n}({\rmproj}\, \Lambda)}$的广义标准Auslander-Reiten分量中复数间不可还原态的左度和右度。我们给出了$\mathbf{C_n}({\rmproj}\, \Lambda)$中复数间不可还原形态的内核和外核属于这样一个范畴的条件。对于一个代数闭域上的有限维遗传代数 $H$,我们确定当一个不可还原形态具有有限左(或右)度时,我们根据某些不可还原形态的度给出一个特征,在此特征下,$mathbf{C_n}({\rm proj}\,H)$ 是有限类型的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the degree in categories of complexes of fixed size
We consider $\Lambda$ an artin algebra and $n \geq 2$. We study how to compute the left and right degrees of irreducible morphisms between complexes in a generalized standard Auslander-Reiten component of ${\mathbf{C_n}({\rm proj}\, \Lambda)}$ with length. We give conditions under which the kernel and the cokernel of irreducible morphisms between complexes in $\mathbf{C_n}({\rm proj}\, \Lambda)$ belong to such a category. For a finite dimensional hereditary algebra $H$ over an algebraically closed field, we determine when an irreducible morphism has finite left (or right) degree and we give a characterization, depending on the degrees of certain irreducible morphisms, under which $\mathbf{C_n}({\rm proj} \,H)$ is of finite type.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信