非正和正 dg 结构之间的科斯祖尔共变对偶性

Riku Fushimi
{"title":"非正和正 dg 结构之间的科斯祖尔共变对偶性","authors":"Riku Fushimi","doi":"arxiv-2409.08842","DOIUrl":null,"url":null,"abstract":"We characterize locally finite non-positive dg algebras that arise as Koszul\nduals of locally finite non-positive dg algebras. Moreover, we show that the\nKoszul dual functor induces contravariant derived equivalnces. As a\nconsequence, we prove that every functorially finite bounded heart of $\\pvd A$\nof a locally finite non-positive dg algebra is a length category.","PeriodicalId":501038,"journal":{"name":"arXiv - MATH - Representation Theory","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Contravariant Koszul duality between non-positive and positive dg algebras\",\"authors\":\"Riku Fushimi\",\"doi\":\"arxiv-2409.08842\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We characterize locally finite non-positive dg algebras that arise as Koszul\\nduals of locally finite non-positive dg algebras. Moreover, we show that the\\nKoszul dual functor induces contravariant derived equivalnces. As a\\nconsequence, we prove that every functorially finite bounded heart of $\\\\pvd A$\\nof a locally finite non-positive dg algebra is a length category.\",\"PeriodicalId\":501038,\"journal\":{\"name\":\"arXiv - MATH - Representation Theory\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Representation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08842\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08842","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们描述了作为局部有限非正 dg 对象的科斯祖尔对偶而产生的局部有限非正 dg 对象的特征。此外,我们还证明了 Koszul 对偶函子会诱导出反变派生等价物。因此,我们证明了局部有限非正数dg代数的$\pvd A$的每一个函子有限有界心都是一个长度范畴。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Contravariant Koszul duality between non-positive and positive dg algebras
We characterize locally finite non-positive dg algebras that arise as Koszul duals of locally finite non-positive dg algebras. Moreover, we show that the Koszul dual functor induces contravariant derived equivalnces. As a consequence, we prove that every functorially finite bounded heart of $\pvd A$ of a locally finite non-positive dg algebra is a length category.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信