群联模式的几乎交换特尔维利格代数 I:分类

Nicholas L. Bastian, Stephen P. Humphries
{"title":"群联模式的几乎交换特尔维利格代数 I:分类","authors":"Nicholas L. Bastian, Stephen P. Humphries","doi":"arxiv-2409.09167","DOIUrl":null,"url":null,"abstract":"Terwilliger algebras are a subalgebra of a matrix algebra that are\nconstructed from association schemes over finite sets. In 2010, Rie Tanaka\ndefined what it means for a Terwilliger algebra to be almost commutative. In\nthat paper she gave five equivalent conditions for a Terwilliger algebra to be\nalmost commutative. In this paper, we provide a classification of which groups\nresult in an almost commutative Terwilliger algebra when looking at the group\nassociation scheme (the Schur ring generated by the conjugacy classes of the\ngroup). In particular, we show that all such groups are either abelian, or\nCamina groups. Following this classification, we then compute the dimension and\nnon-primary primitive idempotents for each Terwilliger algebra of this form for\nthe first three types of groups whose group association scheme gives an almost\ncommutative Terwilliger algebra. The final case will be considered in a second\npaper.","PeriodicalId":501038,"journal":{"name":"arXiv - MATH - Representation Theory","volume":"201 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Almost Commutative Terwilliger Algebras of Group Association Schemes I: Classification\",\"authors\":\"Nicholas L. Bastian, Stephen P. Humphries\",\"doi\":\"arxiv-2409.09167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Terwilliger algebras are a subalgebra of a matrix algebra that are\\nconstructed from association schemes over finite sets. In 2010, Rie Tanaka\\ndefined what it means for a Terwilliger algebra to be almost commutative. In\\nthat paper she gave five equivalent conditions for a Terwilliger algebra to be\\nalmost commutative. In this paper, we provide a classification of which groups\\nresult in an almost commutative Terwilliger algebra when looking at the group\\nassociation scheme (the Schur ring generated by the conjugacy classes of the\\ngroup). In particular, we show that all such groups are either abelian, or\\nCamina groups. Following this classification, we then compute the dimension and\\nnon-primary primitive idempotents for each Terwilliger algebra of this form for\\nthe first three types of groups whose group association scheme gives an almost\\ncommutative Terwilliger algebra. The final case will be considered in a second\\npaper.\",\"PeriodicalId\":501038,\"journal\":{\"name\":\"arXiv - MATH - Representation Theory\",\"volume\":\"201 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Representation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09167\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Terwilliger 代数是矩阵代数的一个子代数,由有限集上的关联方案构造而成。2010 年,田中理惠定义了 Terwilliger 代数几乎交换的含义。在那篇论文中,她给出了 Terwilliger 代数几乎交换的五个等价条件。在本文中,我们将从群关联方案(由群的共轭类生成的舒尔环)的角度,对哪些群会导致几乎交换的特尔维利格代数进行分类。我们特别指出,所有这些群要么是无性群,要么是卡米纳群。根据这一分类,我们将计算前三类群(其群关联方案给出了一个几乎交换的特威里格代数)的维数和每一个这种形式的特威里格代数的非主基元幂级数。最后一种情况将在第二篇论文中讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Almost Commutative Terwilliger Algebras of Group Association Schemes I: Classification
Terwilliger algebras are a subalgebra of a matrix algebra that are constructed from association schemes over finite sets. In 2010, Rie Tanaka defined what it means for a Terwilliger algebra to be almost commutative. In that paper she gave five equivalent conditions for a Terwilliger algebra to be almost commutative. In this paper, we provide a classification of which groups result in an almost commutative Terwilliger algebra when looking at the group association scheme (the Schur ring generated by the conjugacy classes of the group). In particular, we show that all such groups are either abelian, or Camina groups. Following this classification, we then compute the dimension and non-primary primitive idempotents for each Terwilliger algebra of this form for the first three types of groups whose group association scheme gives an almost commutative Terwilliger algebra. The final case will be considered in a second paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信