椭圆韦尔群元素的 Kac 图

Stephen DeBacker, Jacob Haley
{"title":"椭圆韦尔群元素的 Kac 图","authors":"Stephen DeBacker, Jacob Haley","doi":"arxiv-2409.09255","DOIUrl":null,"url":null,"abstract":"Suppose $\\mathfrak{g}$ is a semisimple complex Lie algebra and $\\mathfrak{h}$\nis a Cartan subalgebra of $\\mathfrak{g}$. To the pair\n$(\\mathfrak{g},\\mathfrak{h})$ one can associate both a Weyl group and a set of\nKac diagrams. There is a natural map from the set of elliptic conjugacy classes\nin the Weyl group to the set of Kac diagrams. In both this setting and the\ntwisted setting, this paper (a) shows that this map is injective and (b)\nexplicitly describes this map's image.","PeriodicalId":501038,"journal":{"name":"arXiv - MATH - Representation Theory","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kac Diagrams for Elliptic Weyl Group Elements\",\"authors\":\"Stephen DeBacker, Jacob Haley\",\"doi\":\"arxiv-2409.09255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Suppose $\\\\mathfrak{g}$ is a semisimple complex Lie algebra and $\\\\mathfrak{h}$\\nis a Cartan subalgebra of $\\\\mathfrak{g}$. To the pair\\n$(\\\\mathfrak{g},\\\\mathfrak{h})$ one can associate both a Weyl group and a set of\\nKac diagrams. There is a natural map from the set of elliptic conjugacy classes\\nin the Weyl group to the set of Kac diagrams. In both this setting and the\\ntwisted setting, this paper (a) shows that this map is injective and (b)\\nexplicitly describes this map's image.\",\"PeriodicalId\":501038,\"journal\":{\"name\":\"arXiv - MATH - Representation Theory\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Representation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09255\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

假设 $\mathfrak{g}$ 是一个半简单复数李代数,而 $\mathfrak{h}$ 是 $\mathfrak{g}$ 的 Cartan 子代数。对于这一对$(\mathfrak{g},\mathfrak{h})$,我们可以联想到一个韦尔群和一组卡方图。从韦尔群中的椭圆共轭类集合到 Kac 图集合有一个自然映射。无论是在这种情况下还是在扭曲情况下,本文都(a)证明了这个映射是注入式的,(b)明确描述了这个映射的图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Kac Diagrams for Elliptic Weyl Group Elements
Suppose $\mathfrak{g}$ is a semisimple complex Lie algebra and $\mathfrak{h}$ is a Cartan subalgebra of $\mathfrak{g}$. To the pair $(\mathfrak{g},\mathfrak{h})$ one can associate both a Weyl group and a set of Kac diagrams. There is a natural map from the set of elliptic conjugacy classes in the Weyl group to the set of Kac diagrams. In both this setting and the twisted setting, this paper (a) shows that this map is injective and (b) explicitly describes this map's image.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信