$\mathrm U(p,q)$ 阿瑟包的莫格林-勒纳参数化的非消失条件

Chang Huang
{"title":"$\\mathrm U(p,q)$ 阿瑟包的莫格林-勒纳参数化的非消失条件","authors":"Chang Huang","doi":"arxiv-2409.09358","DOIUrl":null,"url":null,"abstract":"Mogelin-Renard parametrize A-packet of unitary group through cohomological\ninduction in good parity case. Each parameter gives rise to an $A_{\\mathfrak\nq}(\\lambda)$ which is either $0$ or irreducible. Trapa proposed an algorithm to\ndetermine whether a mediocre $A_{\\mathfrak q}(\\lambda)$ of $\\mathrm U(p, q)$ is\nnon-zero. Based on his result, we present a further understanding of the\nnon-vanishing condition of Mogelin-Renard's parametrization. Our criterion come\nout to be a system of linear constraints, and very similiar to the $p$-adic\ncase.","PeriodicalId":501038,"journal":{"name":"arXiv - MATH - Representation Theory","volume":"187 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-vanishing condition on Mogelin-Renard's parametrization for Arthur packets of $\\\\mathrm U(p,q)$\",\"authors\":\"Chang Huang\",\"doi\":\"arxiv-2409.09358\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mogelin-Renard parametrize A-packet of unitary group through cohomological\\ninduction in good parity case. Each parameter gives rise to an $A_{\\\\mathfrak\\nq}(\\\\lambda)$ which is either $0$ or irreducible. Trapa proposed an algorithm to\\ndetermine whether a mediocre $A_{\\\\mathfrak q}(\\\\lambda)$ of $\\\\mathrm U(p, q)$ is\\nnon-zero. Based on his result, we present a further understanding of the\\nnon-vanishing condition of Mogelin-Renard's parametrization. Our criterion come\\nout to be a system of linear constraints, and very similiar to the $p$-adic\\ncase.\",\"PeriodicalId\":501038,\"journal\":{\"name\":\"arXiv - MATH - Representation Theory\",\"volume\":\"187 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Representation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09358\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Mogelin-Renard 通过同调归纳在好奇偶性情况下对单元群的 A 包进行参数化。每个参数都会产生一个 $A_{\mathfrakq}(\lambda)$,而这个 $A_{\mathfrakq}(\lambda)$要么是 $0,要么是不可还原的。特拉帕提出了一种算法来确定$\mathrm U(p, q)$的一个中值$A_{\mathfrak q}(\lambda)$ 是否为零。基于他的结果,我们提出了对莫格林-勒纳参数化的非消失条件的进一步理解。我们的准则是一个线性约束系统,与 $p$-adiccase 非常相似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-vanishing condition on Mogelin-Renard's parametrization for Arthur packets of $\mathrm U(p,q)$
Mogelin-Renard parametrize A-packet of unitary group through cohomological induction in good parity case. Each parameter gives rise to an $A_{\mathfrak q}(\lambda)$ which is either $0$ or irreducible. Trapa proposed an algorithm to determine whether a mediocre $A_{\mathfrak q}(\lambda)$ of $\mathrm U(p, q)$ is non-zero. Based on his result, we present a further understanding of the non-vanishing condition of Mogelin-Renard's parametrization. Our criterion come out to be a system of linear constraints, and very similiar to the $p$-adic case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信