扭曲朱代数

Naoki Genra
{"title":"扭曲朱代数","authors":"Naoki Genra","doi":"arxiv-2409.09656","DOIUrl":null,"url":null,"abstract":"Let $V$ be a freely generated pregraded vertex superalgebra, $H$ a\nHamiltonian operator of $V$, and $g$ a diagonalizable automorphism of V\ncommuting with $H$ with modulus $1$ eigenvalues. We prove that the $(g,\nH)$-twisted Zhu algebra of $V$ has a PBW basis, is isomorphic to the universal\nenveloping algebra of some non-linear Lie superalgebra, and satisfies the\ncommutativity of BRST cohomology functors, which generalizes results of De Sole\nand Kac. As applications, we compute the twisted Zhu algebras of affine vertex\nsuperalgebras and affine $W$-algebras.","PeriodicalId":501038,"journal":{"name":"arXiv - MATH - Representation Theory","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Twisted Zhu algebras\",\"authors\":\"Naoki Genra\",\"doi\":\"arxiv-2409.09656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $V$ be a freely generated pregraded vertex superalgebra, $H$ a\\nHamiltonian operator of $V$, and $g$ a diagonalizable automorphism of V\\ncommuting with $H$ with modulus $1$ eigenvalues. We prove that the $(g,\\nH)$-twisted Zhu algebra of $V$ has a PBW basis, is isomorphic to the universal\\nenveloping algebra of some non-linear Lie superalgebra, and satisfies the\\ncommutativity of BRST cohomology functors, which generalizes results of De Sole\\nand Kac. As applications, we compute the twisted Zhu algebras of affine vertex\\nsuperalgebras and affine $W$-algebras.\",\"PeriodicalId\":501038,\"journal\":{\"name\":\"arXiv - MATH - Representation Theory\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Representation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09656\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设 $V$ 是一个自由生成的预分级顶点超代数,$H$ 是 $V$ 的哈密顿算子,$g$ 是 V 的一个可对角的自变量,与具有模 1$ 特征值的 $H$ 交乘。我们证明$V$的$(g,H)$扭曲朱代数有一个PBW基,与某个非线性李超代数的普遍展开代数同构,并满足BRST同调函数的交换性,这概括了德索兰-卡克的结果。作为应用,我们计算了仿射顶点上代数和仿射 $W$-gebras 的扭曲朱代数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Twisted Zhu algebras
Let $V$ be a freely generated pregraded vertex superalgebra, $H$ a Hamiltonian operator of $V$, and $g$ a diagonalizable automorphism of V commuting with $H$ with modulus $1$ eigenvalues. We prove that the $(g, H)$-twisted Zhu algebra of $V$ has a PBW basis, is isomorphic to the universal enveloping algebra of some non-linear Lie superalgebra, and satisfies the commutativity of BRST cohomology functors, which generalizes results of De Sole and Kac. As applications, we compute the twisted Zhu algebras of affine vertex superalgebras and affine $W$-algebras.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信