结理论和聚类代数 III:Posets

Véronique Bazier-Matte, Ralf Schiffler
{"title":"结理论和聚类代数 III:Posets","authors":"Véronique Bazier-Matte, Ralf Schiffler","doi":"arxiv-2409.11287","DOIUrl":null,"url":null,"abstract":"In previous work, we associated a module $T(i)$ to every segment $i$ of a\nlink diagram $K$ and showed that there is a poset isomorphism between the\nsubmodules of $T(i)$ and the Kauffman states of $K$ relative to $i$. In this\npaper, we show that the posets are distributive lattices and give explicit\ndescriptions of the join irreducibles in both posets. We also prove that the\nsubposet of join irreducible Kauffman states is isomorphic to the poset of the\ncoefficient quiver of $T(i)$.","PeriodicalId":501038,"journal":{"name":"arXiv - MATH - Representation Theory","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Knot theory and cluster algebra III: Posets\",\"authors\":\"Véronique Bazier-Matte, Ralf Schiffler\",\"doi\":\"arxiv-2409.11287\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In previous work, we associated a module $T(i)$ to every segment $i$ of a\\nlink diagram $K$ and showed that there is a poset isomorphism between the\\nsubmodules of $T(i)$ and the Kauffman states of $K$ relative to $i$. In this\\npaper, we show that the posets are distributive lattices and give explicit\\ndescriptions of the join irreducibles in both posets. We also prove that the\\nsubposet of join irreducible Kauffman states is isomorphic to the poset of the\\ncoefficient quiver of $T(i)$.\",\"PeriodicalId\":501038,\"journal\":{\"name\":\"arXiv - MATH - Representation Theory\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Representation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11287\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在以前的工作中,我们将一个模块 $T(i)$ 与链接图 $K$ 的每个段 $i$ 关联起来,并证明了 $T(i)$ 的子模块与 $K$ 相对于 $i$ 的考夫曼态之间存在着正集同构。在本文中,我们证明了这两个正集都是分布网格,并给出了这两个正集中的连接非还原性的明确描述。我们还证明了连接不可还原考夫曼态的子集合与 $T(i)$ 的系数 quiver 的集合同构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Knot theory and cluster algebra III: Posets
In previous work, we associated a module $T(i)$ to every segment $i$ of a link diagram $K$ and showed that there is a poset isomorphism between the submodules of $T(i)$ and the Kauffman states of $K$ relative to $i$. In this paper, we show that the posets are distributive lattices and give explicit descriptions of the join irreducibles in both posets. We also prove that the subposet of join irreducible Kauffman states is isomorphic to the poset of the coefficient quiver of $T(i)$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信