舒伯特变体的多投影塞沙德里分层和标准单项式理论

Henrik Müller
{"title":"舒伯特变体的多投影塞沙德里分层和标准单项式理论","authors":"Henrik Müller","doi":"arxiv-2409.11488","DOIUrl":null,"url":null,"abstract":"Using the language of Seshadri stratifications we develop a geometrical\ninterpretation of Lakshmibai-Seshadri-tableaux and their associated standard\nmonomial bases. These tableaux are a generalization of Young-tableaux and\nDe-Concini-tableaux to all Dynkin types. More precisely, we construct\nfiltrations of multihomogeneous coordinate rings of Schubert varieties, such\nthat the subquotients are one-dimensional and indexed by standard tableaux.","PeriodicalId":501038,"journal":{"name":"arXiv - MATH - Representation Theory","volume":"194 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiprojective Seshadri stratifications for Schubert varieties and standard monomial theory\",\"authors\":\"Henrik Müller\",\"doi\":\"arxiv-2409.11488\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using the language of Seshadri stratifications we develop a geometrical\\ninterpretation of Lakshmibai-Seshadri-tableaux and their associated standard\\nmonomial bases. These tableaux are a generalization of Young-tableaux and\\nDe-Concini-tableaux to all Dynkin types. More precisely, we construct\\nfiltrations of multihomogeneous coordinate rings of Schubert varieties, such\\nthat the subquotients are one-dimensional and indexed by standard tableaux.\",\"PeriodicalId\":501038,\"journal\":{\"name\":\"arXiv - MATH - Representation Theory\",\"volume\":\"194 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Representation Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11488\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Representation Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用塞沙德里分层语言,我们对拉克希米拜-塞沙德里台面及其相关的标准单数基进行了几何解释。这些台构是 Young 台构和 De-Concini 台构对所有 Dynkin 类型的概括。更确切地说,我们构造了舒伯特变项多同质坐标环的过滤,使得子项是一维的,并以标准表项为索引。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiprojective Seshadri stratifications for Schubert varieties and standard monomial theory
Using the language of Seshadri stratifications we develop a geometrical interpretation of Lakshmibai-Seshadri-tableaux and their associated standard monomial bases. These tableaux are a generalization of Young-tableaux and De-Concini-tableaux to all Dynkin types. More precisely, we construct filtrations of multihomogeneous coordinate rings of Schubert varieties, such that the subquotients are one-dimensional and indexed by standard tableaux.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信