Aswin kumar Anbalagan, Rebecca Cummings, Chenyu Zhou, Junsik Mun, Vesna Stanic, Jean Jordan-Sweet, Juntao Yao, Kim Kisslinger, Conan Weiland, Dmytro Nykypanchuk, Steven L. Hulbert, Qiang Li, Yimei Zhu, Mingzhao Liu, Peter V. Sushko, Andrew L. Walter, Andi M. Barbour
{"title":"揭示钽/蓝宝石超导薄膜中埋藏的金属-基底界面层的起源和性质","authors":"Aswin kumar Anbalagan, Rebecca Cummings, Chenyu Zhou, Junsik Mun, Vesna Stanic, Jean Jordan-Sweet, Juntao Yao, Kim Kisslinger, Conan Weiland, Dmytro Nykypanchuk, Steven L. Hulbert, Qiang Li, Yimei Zhu, Mingzhao Liu, Peter V. Sushko, Andrew L. Walter, Andi M. Barbour","doi":"arxiv-2409.10780","DOIUrl":null,"url":null,"abstract":"Despite constituting a smaller fraction of the qubits electromagnetic mode,\nsurfaces and interfaces can exert significant influence as sources of high-loss\ntangents, which brings forward the need to reveal properties of these extended\ndefects and identify routes to their control. Here, we examine the structure\nand composition of the metal-substrate interfacial layer that exists in\nTa/sapphire-based superconducting films. Synchrotron-based X-ray reflectivity\nmeasurements of Ta films, commonly used in these qubits, reveal an unexplored\ninterface layer at the metal-substrate interface. Scanning transmission\nelectron microscopy and core-level electron energy loss spectroscopy identified\nan approximately 0.65 \\ \\text{nm} \\pm 0.05 \\ \\text{nm} thick intermixing layer\nat the metal-substrate interface containing Al, O, and Ta atoms. Density\nfunctional theory (DFT) modeling reveals that the structure and properties of\nthe Ta/sapphire heterojunctions are determined by the oxygen content on the\nsapphire surface prior to Ta deposition, as discussed for the limiting cases of\nTa films on the O-rich versus Al-rich Al2O3 (0001) surface. By using a\nmultimodal approach, integrating various material characterization techniques\nand DFT modeling, we have gained deeper insights into the interface layer\nbetween the metal and substrate. This intermixing at the metal-substrate\ninterface influences their thermodynamic stability and electronic behavior,\nwhich may affect qubit performance.","PeriodicalId":501069,"journal":{"name":"arXiv - PHYS - Superconductivity","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revealing the Origin and Nature of the Buried Metal-Substrate Interface Layer in Ta/Sapphire Superconducting Films\",\"authors\":\"Aswin kumar Anbalagan, Rebecca Cummings, Chenyu Zhou, Junsik Mun, Vesna Stanic, Jean Jordan-Sweet, Juntao Yao, Kim Kisslinger, Conan Weiland, Dmytro Nykypanchuk, Steven L. Hulbert, Qiang Li, Yimei Zhu, Mingzhao Liu, Peter V. Sushko, Andrew L. Walter, Andi M. Barbour\",\"doi\":\"arxiv-2409.10780\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite constituting a smaller fraction of the qubits electromagnetic mode,\\nsurfaces and interfaces can exert significant influence as sources of high-loss\\ntangents, which brings forward the need to reveal properties of these extended\\ndefects and identify routes to their control. Here, we examine the structure\\nand composition of the metal-substrate interfacial layer that exists in\\nTa/sapphire-based superconducting films. Synchrotron-based X-ray reflectivity\\nmeasurements of Ta films, commonly used in these qubits, reveal an unexplored\\ninterface layer at the metal-substrate interface. Scanning transmission\\nelectron microscopy and core-level electron energy loss spectroscopy identified\\nan approximately 0.65 \\\\ \\\\text{nm} \\\\pm 0.05 \\\\ \\\\text{nm} thick intermixing layer\\nat the metal-substrate interface containing Al, O, and Ta atoms. Density\\nfunctional theory (DFT) modeling reveals that the structure and properties of\\nthe Ta/sapphire heterojunctions are determined by the oxygen content on the\\nsapphire surface prior to Ta deposition, as discussed for the limiting cases of\\nTa films on the O-rich versus Al-rich Al2O3 (0001) surface. By using a\\nmultimodal approach, integrating various material characterization techniques\\nand DFT modeling, we have gained deeper insights into the interface layer\\nbetween the metal and substrate. This intermixing at the metal-substrate\\ninterface influences their thermodynamic stability and electronic behavior,\\nwhich may affect qubit performance.\",\"PeriodicalId\":501069,\"journal\":{\"name\":\"arXiv - PHYS - Superconductivity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Superconductivity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10780\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Superconductivity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
尽管表面和界面在量子比特电磁模式中所占的比例较小,但它们作为高孤度量子的来源却能产生重大影响,这就提出了揭示这些扩展缺陷的特性并确定其控制途径的必要性。在这里,我们研究了存在于基于钽/蓝宝石的超导薄膜中的金属-基底界面层的结构和组成。对这些量子比特中常用的钽薄膜进行的同步加速器 X 射线反射率测量显示,在金属-基底界面上存在一个尚未探索的界面层。扫描透射电子显微镜和核级电子能量损失光谱发现了一个大约 0.65 \text{nm}\ppm 0.05 \text{nm} 厚的互混层,该层位于金属-基底界面,包含 Al、O 和 Ta 原子。密度函数理论(DFT)建模表明,Ta/蓝宝石异质结的结构和特性取决于Ta沉积前蓝宝石表面的氧含量,这一点已在富O和富Al的Al2O3 (0001)表面Ta薄膜的极限情况中讨论过。通过采用多模式方法,整合各种材料表征技术和 DFT 建模,我们对金属与基底之间的界面层有了更深入的了解。金属与衬底界面层的混杂会影响它们的热力学稳定性和电子行为,从而可能影响量子比特的性能。
Revealing the Origin and Nature of the Buried Metal-Substrate Interface Layer in Ta/Sapphire Superconducting Films
Despite constituting a smaller fraction of the qubits electromagnetic mode,
surfaces and interfaces can exert significant influence as sources of high-loss
tangents, which brings forward the need to reveal properties of these extended
defects and identify routes to their control. Here, we examine the structure
and composition of the metal-substrate interfacial layer that exists in
Ta/sapphire-based superconducting films. Synchrotron-based X-ray reflectivity
measurements of Ta films, commonly used in these qubits, reveal an unexplored
interface layer at the metal-substrate interface. Scanning transmission
electron microscopy and core-level electron energy loss spectroscopy identified
an approximately 0.65 \ \text{nm} \pm 0.05 \ \text{nm} thick intermixing layer
at the metal-substrate interface containing Al, O, and Ta atoms. Density
functional theory (DFT) modeling reveals that the structure and properties of
the Ta/sapphire heterojunctions are determined by the oxygen content on the
sapphire surface prior to Ta deposition, as discussed for the limiting cases of
Ta films on the O-rich versus Al-rich Al2O3 (0001) surface. By using a
multimodal approach, integrating various material characterization techniques
and DFT modeling, we have gained deeper insights into the interface layer
between the metal and substrate. This intermixing at the metal-substrate
interface influences their thermodynamic stability and electronic behavior,
which may affect qubit performance.