揭示钽/蓝宝石超导薄膜中埋藏的金属-基底界面层的起源和性质

Aswin kumar Anbalagan, Rebecca Cummings, Chenyu Zhou, Junsik Mun, Vesna Stanic, Jean Jordan-Sweet, Juntao Yao, Kim Kisslinger, Conan Weiland, Dmytro Nykypanchuk, Steven L. Hulbert, Qiang Li, Yimei Zhu, Mingzhao Liu, Peter V. Sushko, Andrew L. Walter, Andi M. Barbour
{"title":"揭示钽/蓝宝石超导薄膜中埋藏的金属-基底界面层的起源和性质","authors":"Aswin kumar Anbalagan, Rebecca Cummings, Chenyu Zhou, Junsik Mun, Vesna Stanic, Jean Jordan-Sweet, Juntao Yao, Kim Kisslinger, Conan Weiland, Dmytro Nykypanchuk, Steven L. Hulbert, Qiang Li, Yimei Zhu, Mingzhao Liu, Peter V. Sushko, Andrew L. Walter, Andi M. Barbour","doi":"arxiv-2409.10780","DOIUrl":null,"url":null,"abstract":"Despite constituting a smaller fraction of the qubits electromagnetic mode,\nsurfaces and interfaces can exert significant influence as sources of high-loss\ntangents, which brings forward the need to reveal properties of these extended\ndefects and identify routes to their control. Here, we examine the structure\nand composition of the metal-substrate interfacial layer that exists in\nTa/sapphire-based superconducting films. Synchrotron-based X-ray reflectivity\nmeasurements of Ta films, commonly used in these qubits, reveal an unexplored\ninterface layer at the metal-substrate interface. Scanning transmission\nelectron microscopy and core-level electron energy loss spectroscopy identified\nan approximately 0.65 \\ \\text{nm} \\pm 0.05 \\ \\text{nm} thick intermixing layer\nat the metal-substrate interface containing Al, O, and Ta atoms. Density\nfunctional theory (DFT) modeling reveals that the structure and properties of\nthe Ta/sapphire heterojunctions are determined by the oxygen content on the\nsapphire surface prior to Ta deposition, as discussed for the limiting cases of\nTa films on the O-rich versus Al-rich Al2O3 (0001) surface. By using a\nmultimodal approach, integrating various material characterization techniques\nand DFT modeling, we have gained deeper insights into the interface layer\nbetween the metal and substrate. This intermixing at the metal-substrate\ninterface influences their thermodynamic stability and electronic behavior,\nwhich may affect qubit performance.","PeriodicalId":501069,"journal":{"name":"arXiv - PHYS - Superconductivity","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revealing the Origin and Nature of the Buried Metal-Substrate Interface Layer in Ta/Sapphire Superconducting Films\",\"authors\":\"Aswin kumar Anbalagan, Rebecca Cummings, Chenyu Zhou, Junsik Mun, Vesna Stanic, Jean Jordan-Sweet, Juntao Yao, Kim Kisslinger, Conan Weiland, Dmytro Nykypanchuk, Steven L. Hulbert, Qiang Li, Yimei Zhu, Mingzhao Liu, Peter V. Sushko, Andrew L. Walter, Andi M. Barbour\",\"doi\":\"arxiv-2409.10780\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite constituting a smaller fraction of the qubits electromagnetic mode,\\nsurfaces and interfaces can exert significant influence as sources of high-loss\\ntangents, which brings forward the need to reveal properties of these extended\\ndefects and identify routes to their control. Here, we examine the structure\\nand composition of the metal-substrate interfacial layer that exists in\\nTa/sapphire-based superconducting films. Synchrotron-based X-ray reflectivity\\nmeasurements of Ta films, commonly used in these qubits, reveal an unexplored\\ninterface layer at the metal-substrate interface. Scanning transmission\\nelectron microscopy and core-level electron energy loss spectroscopy identified\\nan approximately 0.65 \\\\ \\\\text{nm} \\\\pm 0.05 \\\\ \\\\text{nm} thick intermixing layer\\nat the metal-substrate interface containing Al, O, and Ta atoms. Density\\nfunctional theory (DFT) modeling reveals that the structure and properties of\\nthe Ta/sapphire heterojunctions are determined by the oxygen content on the\\nsapphire surface prior to Ta deposition, as discussed for the limiting cases of\\nTa films on the O-rich versus Al-rich Al2O3 (0001) surface. By using a\\nmultimodal approach, integrating various material characterization techniques\\nand DFT modeling, we have gained deeper insights into the interface layer\\nbetween the metal and substrate. This intermixing at the metal-substrate\\ninterface influences their thermodynamic stability and electronic behavior,\\nwhich may affect qubit performance.\",\"PeriodicalId\":501069,\"journal\":{\"name\":\"arXiv - PHYS - Superconductivity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Superconductivity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10780\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Superconductivity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

尽管表面和界面在量子比特电磁模式中所占的比例较小,但它们作为高孤度量子的来源却能产生重大影响,这就提出了揭示这些扩展缺陷的特性并确定其控制途径的必要性。在这里,我们研究了存在于基于钽/蓝宝石的超导薄膜中的金属-基底界面层的结构和组成。对这些量子比特中常用的钽薄膜进行的同步加速器 X 射线反射率测量显示,在金属-基底界面上存在一个尚未探索的界面层。扫描透射电子显微镜和核级电子能量损失光谱发现了一个大约 0.65 \text{nm}\ppm 0.05 \text{nm} 厚的互混层,该层位于金属-基底界面,包含 Al、O 和 Ta 原子。密度函数理论(DFT)建模表明,Ta/蓝宝石异质结的结构和特性取决于Ta沉积前蓝宝石表面的氧含量,这一点已在富O和富Al的Al2O3 (0001)表面Ta薄膜的极限情况中讨论过。通过采用多模式方法,整合各种材料表征技术和 DFT 建模,我们对金属与基底之间的界面层有了更深入的了解。金属与衬底界面层的混杂会影响它们的热力学稳定性和电子行为,从而可能影响量子比特的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Revealing the Origin and Nature of the Buried Metal-Substrate Interface Layer in Ta/Sapphire Superconducting Films
Despite constituting a smaller fraction of the qubits electromagnetic mode, surfaces and interfaces can exert significant influence as sources of high-loss tangents, which brings forward the need to reveal properties of these extended defects and identify routes to their control. Here, we examine the structure and composition of the metal-substrate interfacial layer that exists in Ta/sapphire-based superconducting films. Synchrotron-based X-ray reflectivity measurements of Ta films, commonly used in these qubits, reveal an unexplored interface layer at the metal-substrate interface. Scanning transmission electron microscopy and core-level electron energy loss spectroscopy identified an approximately 0.65 \ \text{nm} \pm 0.05 \ \text{nm} thick intermixing layer at the metal-substrate interface containing Al, O, and Ta atoms. Density functional theory (DFT) modeling reveals that the structure and properties of the Ta/sapphire heterojunctions are determined by the oxygen content on the sapphire surface prior to Ta deposition, as discussed for the limiting cases of Ta films on the O-rich versus Al-rich Al2O3 (0001) surface. By using a multimodal approach, integrating various material characterization techniques and DFT modeling, we have gained deeper insights into the interface layer between the metal and substrate. This intermixing at the metal-substrate interface influences their thermodynamic stability and electronic behavior, which may affect qubit performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信