{"title":"量子超代数的基本单色算子","authors":"A. V. Razumov","doi":"arxiv-2409.11097","DOIUrl":null,"url":null,"abstract":"We derive the explicit form of the basic monodromy operator for the quantum\nloop superalgebra $\\mathrm{U}_q(\\mathcal{L}(\\mathfrak{sl}_{2|1}))$. Two\nsignificant additional results emerge from this derivation: simple expressions\nfor the generating functions of the the images of the root vectors of\n$\\mathrm{U}_q(\\mathcal{L}(\\mathfrak{sl}_{2|1}))$ under the Jimbo homomorphism\nand explicit expressions for certain central elements of the quantum\nsuperalgebra $\\mathrm{U}_q(\\mathfrak{gl}_{2|1})$. Furthermore, we establish the\nrelationship between these central elements and those obtained by using the\nDrinfeld partial trace method.","PeriodicalId":501317,"journal":{"name":"arXiv - MATH - Quantum Algebra","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Basic monodromy operator for quantum superalgebra\",\"authors\":\"A. V. Razumov\",\"doi\":\"arxiv-2409.11097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We derive the explicit form of the basic monodromy operator for the quantum\\nloop superalgebra $\\\\mathrm{U}_q(\\\\mathcal{L}(\\\\mathfrak{sl}_{2|1}))$. Two\\nsignificant additional results emerge from this derivation: simple expressions\\nfor the generating functions of the the images of the root vectors of\\n$\\\\mathrm{U}_q(\\\\mathcal{L}(\\\\mathfrak{sl}_{2|1}))$ under the Jimbo homomorphism\\nand explicit expressions for certain central elements of the quantum\\nsuperalgebra $\\\\mathrm{U}_q(\\\\mathfrak{gl}_{2|1})$. Furthermore, we establish the\\nrelationship between these central elements and those obtained by using the\\nDrinfeld partial trace method.\",\"PeriodicalId\":501317,\"journal\":{\"name\":\"arXiv - MATH - Quantum Algebra\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Quantum Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11097\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Quantum Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We derive the explicit form of the basic monodromy operator for the quantum
loop superalgebra $\mathrm{U}_q(\mathcal{L}(\mathfrak{sl}_{2|1}))$. Two
significant additional results emerge from this derivation: simple expressions
for the generating functions of the the images of the root vectors of
$\mathrm{U}_q(\mathcal{L}(\mathfrak{sl}_{2|1}))$ under the Jimbo homomorphism
and explicit expressions for certain central elements of the quantum
superalgebra $\mathrm{U}_q(\mathfrak{gl}_{2|1})$. Furthermore, we establish the
relationship between these central elements and those obtained by using the
Drinfeld partial trace method.