Dražen Adamović, Chunrui Ai, Xingjun Lin, Jinwei Yang
{"title":"某些仿射顶点算子上代数的模类半简约性","authors":"Dražen Adamović, Chunrui Ai, Xingjun Lin, Jinwei Yang","doi":"arxiv-2409.11797","DOIUrl":null,"url":null,"abstract":"In this paper, we show Kazhdan-Lusztig categories, that is, the categories of\nlower bounded generalized weight modules for certain affine vertex operator\nsuperalgebras that are locally finite modules of the underlying finite\ndimensional Lie superalgebra, are semisimple. Those are all representation\ncategories of affine vertex operator superalgebras at conformal but non\nadmissible levels. As a consequence, the categories of finite length\ngeneralized modules for these affine vertex operator superalgebras have braided\ntensor category structures.","PeriodicalId":501317,"journal":{"name":"arXiv - MATH - Quantum Algebra","volume":"66 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semisimplicity of module categories of certain affine vertex operator superalgebras\",\"authors\":\"Dražen Adamović, Chunrui Ai, Xingjun Lin, Jinwei Yang\",\"doi\":\"arxiv-2409.11797\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we show Kazhdan-Lusztig categories, that is, the categories of\\nlower bounded generalized weight modules for certain affine vertex operator\\nsuperalgebras that are locally finite modules of the underlying finite\\ndimensional Lie superalgebra, are semisimple. Those are all representation\\ncategories of affine vertex operator superalgebras at conformal but non\\nadmissible levels. As a consequence, the categories of finite length\\ngeneralized modules for these affine vertex operator superalgebras have braided\\ntensor category structures.\",\"PeriodicalId\":501317,\"journal\":{\"name\":\"arXiv - MATH - Quantum Algebra\",\"volume\":\"66 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Quantum Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11797\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Quantum Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Semisimplicity of module categories of certain affine vertex operator superalgebras
In this paper, we show Kazhdan-Lusztig categories, that is, the categories of
lower bounded generalized weight modules for certain affine vertex operator
superalgebras that are locally finite modules of the underlying finite
dimensional Lie superalgebra, are semisimple. Those are all representation
categories of affine vertex operator superalgebras at conformal but non
admissible levels. As a consequence, the categories of finite length
generalized modules for these affine vertex operator superalgebras have braided
tensor category structures.