某些仿射顶点算子上代数的模类半简约性

Dražen Adamović, Chunrui Ai, Xingjun Lin, Jinwei Yang
{"title":"某些仿射顶点算子上代数的模类半简约性","authors":"Dražen Adamović, Chunrui Ai, Xingjun Lin, Jinwei Yang","doi":"arxiv-2409.11797","DOIUrl":null,"url":null,"abstract":"In this paper, we show Kazhdan-Lusztig categories, that is, the categories of\nlower bounded generalized weight modules for certain affine vertex operator\nsuperalgebras that are locally finite modules of the underlying finite\ndimensional Lie superalgebra, are semisimple. Those are all representation\ncategories of affine vertex operator superalgebras at conformal but non\nadmissible levels. As a consequence, the categories of finite length\ngeneralized modules for these affine vertex operator superalgebras have braided\ntensor category structures.","PeriodicalId":501317,"journal":{"name":"arXiv - MATH - Quantum Algebra","volume":"66 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semisimplicity of module categories of certain affine vertex operator superalgebras\",\"authors\":\"Dražen Adamović, Chunrui Ai, Xingjun Lin, Jinwei Yang\",\"doi\":\"arxiv-2409.11797\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we show Kazhdan-Lusztig categories, that is, the categories of\\nlower bounded generalized weight modules for certain affine vertex operator\\nsuperalgebras that are locally finite modules of the underlying finite\\ndimensional Lie superalgebra, are semisimple. Those are all representation\\ncategories of affine vertex operator superalgebras at conformal but non\\nadmissible levels. As a consequence, the categories of finite length\\ngeneralized modules for these affine vertex operator superalgebras have braided\\ntensor category structures.\",\"PeriodicalId\":501317,\"journal\":{\"name\":\"arXiv - MATH - Quantum Algebra\",\"volume\":\"66 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Quantum Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11797\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Quantum Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们证明了卡兹丹-卢兹提格范畴,即某些仿射顶点算子上代数的有界广义权模块范畴,它们是底层有限维李超代数的局部有限模块,是半简单的。这些都是仿射顶点算子超代数在共形但非容许层次上的表示范畴。因此,这些仿射顶点算子超代数的有限长度广义模范畴具有编织张量范畴结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semisimplicity of module categories of certain affine vertex operator superalgebras
In this paper, we show Kazhdan-Lusztig categories, that is, the categories of lower bounded generalized weight modules for certain affine vertex operator superalgebras that are locally finite modules of the underlying finite dimensional Lie superalgebra, are semisimple. Those are all representation categories of affine vertex operator superalgebras at conformal but non admissible levels. As a consequence, the categories of finite length generalized modules for these affine vertex operator superalgebras have braided tensor category structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信