通过人工神经网络进行天文二进制分类

Joe Smith
{"title":"通过人工神经网络进行天文二进制分类","authors":"Joe Smith","doi":"arxiv-2409.09563","DOIUrl":null,"url":null,"abstract":"With nearly two billion stars observed and their corresponding astrometric\nparameters evaluated in the recent Gaia mission, the number of astrometric\nbinary candidates have risen significantly. Due to the surplus of astrometric\ndata, the current computational methods employed to inspect these astrometric\nbinary candidates are both computationally expensive and cannot be executed in\na reasonable time frame. In light of this, a machine learning (ML) technique to\nautomatically classify whether a set of stars belong to an astrometric binary\npair via an artificial neural network (ANN) is proposed. Using data from Gaia\nDR3, the ANN was trained and tested on 1.5 million highly probable true and\nvisual binaries, considering the proper motions, parallaxes, and angular and\nphysical separations as features. The ANN achieves high classification scores,\nwith an accuracy of 99.3%, a precision rate of 0.988, a recall rate of 0.991,\nand an AUC of 0.999, indicating that the utilized ML technique is a highly\neffective method for classifying astrometric binaries. Thus, the proposed ANN\nis a promising alternative to the existing methods for the classification of\nastrometric binaries.","PeriodicalId":501065,"journal":{"name":"arXiv - PHYS - Data Analysis, Statistics and Probability","volume":"66 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Astrometric Binary Classification Via Artificial Neural Networks\",\"authors\":\"Joe Smith\",\"doi\":\"arxiv-2409.09563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With nearly two billion stars observed and their corresponding astrometric\\nparameters evaluated in the recent Gaia mission, the number of astrometric\\nbinary candidates have risen significantly. Due to the surplus of astrometric\\ndata, the current computational methods employed to inspect these astrometric\\nbinary candidates are both computationally expensive and cannot be executed in\\na reasonable time frame. In light of this, a machine learning (ML) technique to\\nautomatically classify whether a set of stars belong to an astrometric binary\\npair via an artificial neural network (ANN) is proposed. Using data from Gaia\\nDR3, the ANN was trained and tested on 1.5 million highly probable true and\\nvisual binaries, considering the proper motions, parallaxes, and angular and\\nphysical separations as features. The ANN achieves high classification scores,\\nwith an accuracy of 99.3%, a precision rate of 0.988, a recall rate of 0.991,\\nand an AUC of 0.999, indicating that the utilized ML technique is a highly\\neffective method for classifying astrometric binaries. Thus, the proposed ANN\\nis a promising alternative to the existing methods for the classification of\\nastrometric binaries.\",\"PeriodicalId\":501065,\"journal\":{\"name\":\"arXiv - PHYS - Data Analysis, Statistics and Probability\",\"volume\":\"66 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Data Analysis, Statistics and Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09563\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Data Analysis, Statistics and Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09563","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近的盖亚(Gaia)任务观测了近20亿颗恒星,并对其相应的天体测量参数进行了评估,因此天体测量双星候选体的数量大幅上升。由于天体测量数据过剩,目前用于检测这些天体测量双星候选体的计算方法不仅计算成本高昂,而且无法在合理的时间范围内执行。有鉴于此,我们提出了一种机器学习(ML)技术,通过人工神经网络(ANN)对一组恒星是否属于天体测量双星对进行自动分类。利用来自GaiaDR3的数据,对150万个高概率真双星和视双星进行了人工神经网络训练和测试,并将正交运动、视差、角度和物理分隔作为特征。ANN的分类得分很高,准确率为99.3%,精确率为0.988,召回率为0.991,AUC为0.999,表明所利用的ML技术是一种高效的天体测量双星分类方法。因此,在天体测量双星的分类中,所提出的人工神经网络是现有方法的一种很有前途的替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Astrometric Binary Classification Via Artificial Neural Networks
With nearly two billion stars observed and their corresponding astrometric parameters evaluated in the recent Gaia mission, the number of astrometric binary candidates have risen significantly. Due to the surplus of astrometric data, the current computational methods employed to inspect these astrometric binary candidates are both computationally expensive and cannot be executed in a reasonable time frame. In light of this, a machine learning (ML) technique to automatically classify whether a set of stars belong to an astrometric binary pair via an artificial neural network (ANN) is proposed. Using data from Gaia DR3, the ANN was trained and tested on 1.5 million highly probable true and visual binaries, considering the proper motions, parallaxes, and angular and physical separations as features. The ANN achieves high classification scores, with an accuracy of 99.3%, a precision rate of 0.988, a recall rate of 0.991, and an AUC of 0.999, indicating that the utilized ML technique is a highly effective method for classifying astrometric binaries. Thus, the proposed ANN is a promising alternative to the existing methods for the classification of astrometric binaries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信