大等级曲线的第二协同方案

Marian Aprodu, Andrea Bruno, Edoardo Sernesi
{"title":"大等级曲线的第二协同方案","authors":"Marian Aprodu, Andrea Bruno, Edoardo Sernesi","doi":"arxiv-2409.11855","DOIUrl":null,"url":null,"abstract":"The present paper is a natural continuation of a previous work where we\nstudied the second syzygy scheme of canonical curves. We find sufficient\nconditions ensuring that the second syzygy scheme of a genus--$g$ curve of\ndegree at least $2g+2$ coincide with the curve. If the property $(N_2)$ is\nsatisfied, the equality is ensured by a more general fact. If $(N_2)$ fails,\nthen the analysis uses the known case of canonical curves.","PeriodicalId":501063,"journal":{"name":"arXiv - MATH - Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The second syzygy schemes of curves of large degree\",\"authors\":\"Marian Aprodu, Andrea Bruno, Edoardo Sernesi\",\"doi\":\"arxiv-2409.11855\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present paper is a natural continuation of a previous work where we\\nstudied the second syzygy scheme of canonical curves. We find sufficient\\nconditions ensuring that the second syzygy scheme of a genus--$g$ curve of\\ndegree at least $2g+2$ coincide with the curve. If the property $(N_2)$ is\\nsatisfied, the equality is ensured by a more general fact. If $(N_2)$ fails,\\nthen the analysis uses the known case of canonical curves.\",\"PeriodicalId\":501063,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11855\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11855","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文是前人研究典型曲线第二共轭方案的自然延续。我们找到了充分的条件,确保阶数至少为 2g+2$ 的属--$g$ 曲线的第二对称方案与曲线重合。如果满足了性质 $(N_2)$,那么相等就可以通过一个更普遍的事实来保证。如果$(N_2)$不满足,那么分析将使用已知的典型曲线的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The second syzygy schemes of curves of large degree
The present paper is a natural continuation of a previous work where we studied the second syzygy scheme of canonical curves. We find sufficient conditions ensuring that the second syzygy scheme of a genus--$g$ curve of degree at least $2g+2$ coincide with the curve. If the property $(N_2)$ is satisfied, the equality is ensured by a more general fact. If $(N_2)$ fails, then the analysis uses the known case of canonical curves.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信