具有一维李代数的无穷小交换单能群方案

Bianca Gouthier
{"title":"具有一维李代数的无穷小交换单能群方案","authors":"Bianca Gouthier","doi":"arxiv-2409.11997","DOIUrl":null,"url":null,"abstract":"We prove that over an algebraically closed field of characteristic $p>0$\nthere are exactly, up to isomorphism, $n$ infinitesimal commutative unipotent\n$k$-group schemes of order $p^n$ with one-dimensional Lie algebra, and we\nexplicitly describe them. We consequently recover an explicit description of\nthe $p^n$-torsion of any supersingular elliptic curve over an algebraically\nclosed field. Finally, we use these results to answer a question of Brion on\nrational actions of infinitesimal commutative unipotent group schemes on\ncurves.","PeriodicalId":501063,"journal":{"name":"arXiv - MATH - Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Infinitesimal commutative unipotent group schemes with one-dimensional Lie algebra\",\"authors\":\"Bianca Gouthier\",\"doi\":\"arxiv-2409.11997\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that over an algebraically closed field of characteristic $p>0$\\nthere are exactly, up to isomorphism, $n$ infinitesimal commutative unipotent\\n$k$-group schemes of order $p^n$ with one-dimensional Lie algebra, and we\\nexplicitly describe them. We consequently recover an explicit description of\\nthe $p^n$-torsion of any supersingular elliptic curve over an algebraically\\nclosed field. Finally, we use these results to answer a question of Brion on\\nrational actions of infinitesimal commutative unipotent group schemes on\\ncurves.\",\"PeriodicalId\":501063,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11997\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,在特征为 $p>0$ 的代数闭域上,在同构情况下,正好有 $n$ 个具有一维李代数的阶 $p^n$ 的无穷小交换单能 $k$ 群方案,并且我们明确地描述了它们。因此,我们恢复了对代数封闭域上任何超星椭圆曲线的 $p^n$ 扭转的明确描述。最后,我们用这些结果回答了布里昂提出的一个关于曲线上无穷小交换单能群方案的有理作用的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Infinitesimal commutative unipotent group schemes with one-dimensional Lie algebra
We prove that over an algebraically closed field of characteristic $p>0$ there are exactly, up to isomorphism, $n$ infinitesimal commutative unipotent $k$-group schemes of order $p^n$ with one-dimensional Lie algebra, and we explicitly describe them. We consequently recover an explicit description of the $p^n$-torsion of any supersingular elliptic curve over an algebraically closed field. Finally, we use these results to answer a question of Brion on rational actions of infinitesimal commutative unipotent group schemes on curves.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信