立方四折和可还原 OADP 表面的模量

Michele Bolognesi, Zakaria Brahimi, Hanine Awada
{"title":"立方四折和可还原 OADP 表面的模量","authors":"Michele Bolognesi, Zakaria Brahimi, Hanine Awada","doi":"arxiv-2409.12032","DOIUrl":null,"url":null,"abstract":"In this paper we explore the intersection of the Hassett divisor $\\mathcal\nC_8$, parametrizing smooth cubic fourfolds $X$ containing a plane $P$ with\nother divisors $\\mathcal C_i$. Notably we study the irreducible components of\nthe intersections with $\\mathcal{C}_{12}$ and $\\mathcal{C}_{20}$. These two\ndivisors generically parametrize respectively cubics containing a smooth cubic\nscroll, and a smooth Veronese surface. First, we find all the irreducible\ncomponents of the two intersections, and describe the geometry of the generic\nelements in terms of the intersection of $P$ with the other surface. Then we\nconsider the problem of rationality of cubics in these components, either by\nfinding rational sections of the quadric fibration induced by projection off\n$P$, or by finding examples of reducible one-apparent-double-point surfaces\ninside $X$. Finally, via some Macaulay computations, we give explicit equations\nfor cubics in each component.","PeriodicalId":501063,"journal":{"name":"arXiv - MATH - Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Moduli of Cubic fourfolds and reducible OADP surfaces\",\"authors\":\"Michele Bolognesi, Zakaria Brahimi, Hanine Awada\",\"doi\":\"arxiv-2409.12032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we explore the intersection of the Hassett divisor $\\\\mathcal\\nC_8$, parametrizing smooth cubic fourfolds $X$ containing a plane $P$ with\\nother divisors $\\\\mathcal C_i$. Notably we study the irreducible components of\\nthe intersections with $\\\\mathcal{C}_{12}$ and $\\\\mathcal{C}_{20}$. These two\\ndivisors generically parametrize respectively cubics containing a smooth cubic\\nscroll, and a smooth Veronese surface. First, we find all the irreducible\\ncomponents of the two intersections, and describe the geometry of the generic\\nelements in terms of the intersection of $P$ with the other surface. Then we\\nconsider the problem of rationality of cubics in these components, either by\\nfinding rational sections of the quadric fibration induced by projection off\\n$P$, or by finding examples of reducible one-apparent-double-point surfaces\\ninside $X$. Finally, via some Macaulay computations, we give explicit equations\\nfor cubics in each component.\",\"PeriodicalId\":501063,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.12032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.12032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们探讨了哈塞特除数 $\mathcalC_8$ 与其他除数 $\mathcal C_i$ 的交集,哈塞特除数 $\mathcalC_8$ 参数化了包含平面 $P$ 的光滑立方四折$X$。值得注意的是,我们研究了与 $\mathcal{C}_{12}$ 和 $\mathcal{C}_{20}$ 交集的不可还原成分。这两个分维分别泛函包含光滑立方卷轴的立方体和光滑维罗尼斯曲面。首先,我们找出两个交点的所有不可还原分量,并根据 $P$ 与另一个曲面的交点来描述泛函的几何形状。然后,我们考虑这些分量中立方体的合理性问题,或者通过寻找投影离开 $P$ 所诱导的二次纤维的合理截面,或者通过寻找在 $X$ 内的可还原一显双点曲面的例子。最后,通过一些麦考莱计算,我们给出了每个分量中立方体的明确方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Moduli of Cubic fourfolds and reducible OADP surfaces
In this paper we explore the intersection of the Hassett divisor $\mathcal C_8$, parametrizing smooth cubic fourfolds $X$ containing a plane $P$ with other divisors $\mathcal C_i$. Notably we study the irreducible components of the intersections with $\mathcal{C}_{12}$ and $\mathcal{C}_{20}$. These two divisors generically parametrize respectively cubics containing a smooth cubic scroll, and a smooth Veronese surface. First, we find all the irreducible components of the two intersections, and describe the geometry of the generic elements in terms of the intersection of $P$ with the other surface. Then we consider the problem of rationality of cubics in these components, either by finding rational sections of the quadric fibration induced by projection off $P$, or by finding examples of reducible one-apparent-double-point surfaces inside $X$. Finally, via some Macaulay computations, we give explicit equations for cubics in each component.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信