{"title":"贝科维奇空间的可访问骨架","authors":"Antoine Ducros, Amaury Thuillier","doi":"arxiv-2409.08755","DOIUrl":null,"url":null,"abstract":"We define a class of skeletons on Berkovich analytic spaces, which we call\n\"accessible\", which contains the standard skeleton of the n-dimensional torus\nfor every n and is preserved by G-glueing, by taking the inverse image along a\nmorphism of relative dimension zero, and by taking the direct image along a\nmorphism whose restriction to the involved skeleton is topologically proper.","PeriodicalId":501063,"journal":{"name":"arXiv - MATH - Algebraic Geometry","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Les squelettes accessibles d'un espace de Berkovich\",\"authors\":\"Antoine Ducros, Amaury Thuillier\",\"doi\":\"arxiv-2409.08755\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We define a class of skeletons on Berkovich analytic spaces, which we call\\n\\\"accessible\\\", which contains the standard skeleton of the n-dimensional torus\\nfor every n and is preserved by G-glueing, by taking the inverse image along a\\nmorphism of relative dimension zero, and by taking the direct image along a\\nmorphism whose restriction to the involved skeleton is topologically proper.\",\"PeriodicalId\":501063,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Geometry\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08755\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们定义了一类伯克维奇解析空间上的骨架,称之为 "可访问的",它包含了每 n 个 n 维环面的标准骨架,并且通过 G 胶合、沿相对维数为零的非定态取反像以及沿其对相关骨架的限制是拓扑适当的非定态取直像而得到保留。
Les squelettes accessibles d'un espace de Berkovich
We define a class of skeletons on Berkovich analytic spaces, which we call
"accessible", which contains the standard skeleton of the n-dimensional torus
for every n and is preserved by G-glueing, by taking the inverse image along a
morphism of relative dimension zero, and by taking the direct image along a
morphism whose restriction to the involved skeleton is topologically proper.