具有交映自动形态的立方四面体

Kenji Koike
{"title":"具有交映自动形态的立方四面体","authors":"Kenji Koike","doi":"arxiv-2409.08448","DOIUrl":null,"url":null,"abstract":"We determine projective equations of smooth complex cubic fourfolds with\nsymplectic automorphisms by classifying 6-dimensional projective\nrepresentations of Laza and Zheng's 34 groups. In particular, we determine the\nnumber of irreducible components for moduli spaces of cubic fourfolds with\nsymplectic actions by these groups. We also discuss the fields of definition of\ncubic fourfolds in six maximal cases.","PeriodicalId":501063,"journal":{"name":"arXiv - MATH - Algebraic Geometry","volume":"211 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cubic fourfolds with symplectic automorphisms\",\"authors\":\"Kenji Koike\",\"doi\":\"arxiv-2409.08448\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We determine projective equations of smooth complex cubic fourfolds with\\nsymplectic automorphisms by classifying 6-dimensional projective\\nrepresentations of Laza and Zheng's 34 groups. In particular, we determine the\\nnumber of irreducible components for moduli spaces of cubic fourfolds with\\nsymplectic actions by these groups. We also discuss the fields of definition of\\ncubic fourfolds in six maximal cases.\",\"PeriodicalId\":501063,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Geometry\",\"volume\":\"211 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08448\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08448","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们通过对 Laza 和 Zheng 的 34 个群组的 6 维投影表示进行分类,确定了具有交映自形的光滑复立方四面体的投影方程。特别是,我们确定了具有这些群的交错作用的立方四面体模空间的不可还原分量数。我们还讨论了立方四折在六种最大情况下的定义域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cubic fourfolds with symplectic automorphisms
We determine projective equations of smooth complex cubic fourfolds with symplectic automorphisms by classifying 6-dimensional projective representations of Laza and Zheng's 34 groups. In particular, we determine the number of irreducible components for moduli spaces of cubic fourfolds with symplectic actions by these groups. We also discuss the fields of definition of cubic fourfolds in six maximal cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信