Grigoriy Blekherman, Rainer Sinn, Gregory G. Smith, Mauricio Velasco
{"title":"实代数曲面上的非负性证书","authors":"Grigoriy Blekherman, Rainer Sinn, Gregory G. Smith, Mauricio Velasco","doi":"arxiv-2409.08834","DOIUrl":null,"url":null,"abstract":"We introduce tools for transferring nonnegativity certificates for global\nsections between line bundles on real algebraic surfaces. As applications, we\nimprove Hilbert's degree bounds on sum-of-squares multipliers for nonnegative\nternary forms, give a complete characterization of nonnegative real forms of\ndel Pezzo surfaces, and establish quadratic upper bounds for the degrees of\nsum-of-squares multipliers for nonnegative forms on real ruled surfaces.","PeriodicalId":501063,"journal":{"name":"arXiv - MATH - Algebraic Geometry","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonnegativity certificates on real algebraic surfaces\",\"authors\":\"Grigoriy Blekherman, Rainer Sinn, Gregory G. Smith, Mauricio Velasco\",\"doi\":\"arxiv-2409.08834\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce tools for transferring nonnegativity certificates for global\\nsections between line bundles on real algebraic surfaces. As applications, we\\nimprove Hilbert's degree bounds on sum-of-squares multipliers for nonnegative\\nternary forms, give a complete characterization of nonnegative real forms of\\ndel Pezzo surfaces, and establish quadratic upper bounds for the degrees of\\nsum-of-squares multipliers for nonnegative forms on real ruled surfaces.\",\"PeriodicalId\":501063,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Geometry\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08834\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08834","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nonnegativity certificates on real algebraic surfaces
We introduce tools for transferring nonnegativity certificates for global
sections between line bundles on real algebraic surfaces. As applications, we
improve Hilbert's degree bounds on sum-of-squares multipliers for nonnegative
ternary forms, give a complete characterization of nonnegative real forms of
del Pezzo surfaces, and establish quadratic upper bounds for the degrees of
sum-of-squares multipliers for nonnegative forms on real ruled surfaces.