实代数曲面上的非负性证书

Grigoriy Blekherman, Rainer Sinn, Gregory G. Smith, Mauricio Velasco
{"title":"实代数曲面上的非负性证书","authors":"Grigoriy Blekherman, Rainer Sinn, Gregory G. Smith, Mauricio Velasco","doi":"arxiv-2409.08834","DOIUrl":null,"url":null,"abstract":"We introduce tools for transferring nonnegativity certificates for global\nsections between line bundles on real algebraic surfaces. As applications, we\nimprove Hilbert's degree bounds on sum-of-squares multipliers for nonnegative\nternary forms, give a complete characterization of nonnegative real forms of\ndel Pezzo surfaces, and establish quadratic upper bounds for the degrees of\nsum-of-squares multipliers for nonnegative forms on real ruled surfaces.","PeriodicalId":501063,"journal":{"name":"arXiv - MATH - Algebraic Geometry","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonnegativity certificates on real algebraic surfaces\",\"authors\":\"Grigoriy Blekherman, Rainer Sinn, Gregory G. Smith, Mauricio Velasco\",\"doi\":\"arxiv-2409.08834\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce tools for transferring nonnegativity certificates for global\\nsections between line bundles on real algebraic surfaces. As applications, we\\nimprove Hilbert's degree bounds on sum-of-squares multipliers for nonnegative\\nternary forms, give a complete characterization of nonnegative real forms of\\ndel Pezzo surfaces, and establish quadratic upper bounds for the degrees of\\nsum-of-squares multipliers for nonnegative forms on real ruled surfaces.\",\"PeriodicalId\":501063,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Geometry\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08834\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08834","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍了在实代数曲面上的线束之间转移全局剖分的非负性证书的工具。作为应用,我们改进了希尔伯特关于非负非形式的平方和乘数的度界,给出了德尔佩佐曲面的非负实形式的完整表征,并建立了实规则曲面上非负形的平方和乘数的二次上限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonnegativity certificates on real algebraic surfaces
We introduce tools for transferring nonnegativity certificates for global sections between line bundles on real algebraic surfaces. As applications, we improve Hilbert's degree bounds on sum-of-squares multipliers for nonnegative ternary forms, give a complete characterization of nonnegative real forms of del Pezzo surfaces, and establish quadratic upper bounds for the degrees of sum-of-squares multipliers for nonnegative forms on real ruled surfaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信