法布尔--潘达里潘德循环消失的志村曲线

Congling Qiu
{"title":"法布尔--潘达里潘德循环消失的志村曲线","authors":"Congling Qiu","doi":"arxiv-2409.08989","DOIUrl":null,"url":null,"abstract":"A result of Green and Griffiths states that for the generic curve $C$ of\ngenus $g \\geq 4$ with the canonical divisor $K$, its Faber--Pandharipande\n0-cycle $K\\times K-(2g-2)K_\\Delta$ on $C\\times C$ is nontorsion in the Chow\ngroup of rational equivalence classes. For Shimura curves, however, we show\nthat their Faber--Pandharipande 0-cycles are rationally equivalent to 0. This\nis predicted by a conjecture of Beilinson and Bloch.","PeriodicalId":501063,"journal":{"name":"arXiv - MATH - Algebraic Geometry","volume":"192 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Faber--Pandharipande Cycles vanish for Shimura curves\",\"authors\":\"Congling Qiu\",\"doi\":\"arxiv-2409.08989\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A result of Green and Griffiths states that for the generic curve $C$ of\\ngenus $g \\\\geq 4$ with the canonical divisor $K$, its Faber--Pandharipande\\n0-cycle $K\\\\times K-(2g-2)K_\\\\Delta$ on $C\\\\times C$ is nontorsion in the Chow\\ngroup of rational equivalence classes. For Shimura curves, however, we show\\nthat their Faber--Pandharipande 0-cycles are rationally equivalent to 0. This\\nis predicted by a conjecture of Beilinson and Bloch.\",\"PeriodicalId\":501063,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Geometry\",\"volume\":\"192 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08989\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08989","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

格林(Green)和格里菲斯(Griffiths)的一个结果表明,对于属$g \geq 4$、有典型除数$K$的一般曲线$C$,其在$C/times C$上的法布尔--潘达里潘德0循环$K/times K-(2g-2)K_\Delta$ 在有理等价类的周群中是非扭转的。然而,对于Shimura曲线,我们证明它们的Faber--Pandharipande--0循环在理性上等价于0。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Faber--Pandharipande Cycles vanish for Shimura curves
A result of Green and Griffiths states that for the generic curve $C$ of genus $g \geq 4$ with the canonical divisor $K$, its Faber--Pandharipande 0-cycle $K\times K-(2g-2)K_\Delta$ on $C\times C$ is nontorsion in the Chow group of rational equivalence classes. For Shimura curves, however, we show that their Faber--Pandharipande 0-cycles are rationally equivalent to 0. This is predicted by a conjecture of Beilinson and Bloch.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信