超卡勒变上光滑但非交错的剪子模数

Andreas Krug, Fabian Reede, Ziyu Zhang
{"title":"超卡勒变上光滑但非交错的剪子模数","authors":"Andreas Krug, Fabian Reede, Ziyu Zhang","doi":"arxiv-2409.08991","DOIUrl":null,"url":null,"abstract":"For an abelian surface $A$, we consider stable vector bundles on a\ngeneralized Kummer variety $K_n(A)$ with $n>1$. We prove that the connected\ncomponent of the moduli space which contains the tautological bundles\nassociated to line bundles of degree $0$ is isomorphic to the blowup of the\ndual abelian surface in one point. We believe that this is the first explicit\nexample of a component which is smooth with a non-trivial canonical bundle.","PeriodicalId":501063,"journal":{"name":"arXiv - MATH - Algebraic Geometry","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A smooth but non-symplectic moduli of sheaves on a hyperkähler variety\",\"authors\":\"Andreas Krug, Fabian Reede, Ziyu Zhang\",\"doi\":\"arxiv-2409.08991\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For an abelian surface $A$, we consider stable vector bundles on a\\ngeneralized Kummer variety $K_n(A)$ with $n>1$. We prove that the connected\\ncomponent of the moduli space which contains the tautological bundles\\nassociated to line bundles of degree $0$ is isomorphic to the blowup of the\\ndual abelian surface in one point. We believe that this is the first explicit\\nexample of a component which is smooth with a non-trivial canonical bundle.\",\"PeriodicalId\":501063,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Geometry\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08991\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08991","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于一个无性曲面 $A$,我们考虑了广义库默尔综$K_n(A)$上的稳定向量束,其中$n>1$。我们证明,模空间中包含与阶为 $0$ 的线束相关的同调束的连通部分与双无常曲面在一点上的炸开是同构的。我们认为这是第一个具有非三维典型束的光滑分量的实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A smooth but non-symplectic moduli of sheaves on a hyperkähler variety
For an abelian surface $A$, we consider stable vector bundles on a generalized Kummer variety $K_n(A)$ with $n>1$. We prove that the connected component of the moduli space which contains the tautological bundles associated to line bundles of degree $0$ is isomorphic to the blowup of the dual abelian surface in one point. We believe that this is the first explicit example of a component which is smooth with a non-trivial canonical bundle.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信