关于加权同质奇点的第 k $-th 特朱里纳数

Chuangqiang Hu, Stephen S. -T. Yau, Huaiqing Zuo
{"title":"关于加权同质奇点的第 k $-th 特朱里纳数","authors":"Chuangqiang Hu, Stephen S. -T. Yau, Huaiqing Zuo","doi":"arxiv-2409.09384","DOIUrl":null,"url":null,"abstract":"Let $ (X,0) $ denote an isolated singularity defined by a weighted\nhomogeneous polynomial $ f $. Let $ \\mathcal{O}$ be the local algebra of all\nholomorphic function germs at the origin with the maximal ideal $m $. We study\nthe $k$-th Tjurina algebra, defined by $ A_k(f): = \\mathcal{O} / \\left( f , m^k\nJ(f) \\right) $, where $J(f)$ denotes the Jacobi ideal of $ \\mathcal{O}$. The\nzeroth Tjurina algebra is well known to represent the tangent space of the base\nspace of the semi-universal deformation of $(X, 0)$. Motivated by this\nobservation, we explore the deformation of $(X,0)$ with respect to a fixed\n$k$-residue point. We show that the tangent space of the corresponding\ndeformation functor is a subspace of the $k$-th Tjurina algebra. Explicitly\ncalculating the $k$-th Tjurina numbers, which correspond to the dimensions of\nthe Tjurina algebra, plays a crucial role in understanding these deformations.\nAccording to the results of Milnor and Orlik, the zeroth Tjurina number can be\nexpressed explicitly in terms of the weights of the variables in $f$. However,\nwe observe that for values of $k$ exceeding the multiplicity of $X$, the $k$-th\nTjurina number becomes more intricate and is not solely determined by the\nweights of variables. In this paper, we introduce a novel complex derived from\nthe classical Koszul complex and obtain a computable formula for the $k$-th\nTjurina numbers for all $ k \\geqslant 0 $. As applications, we calculate the\n$k$-th Tjurina numbers for all weighted homogeneous singularities in three\nvariables.","PeriodicalId":501063,"journal":{"name":"arXiv - MATH - Algebraic Geometry","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the $k$-th Tjurina number of weighted homogeneous singularities\",\"authors\":\"Chuangqiang Hu, Stephen S. -T. Yau, Huaiqing Zuo\",\"doi\":\"arxiv-2409.09384\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $ (X,0) $ denote an isolated singularity defined by a weighted\\nhomogeneous polynomial $ f $. Let $ \\\\mathcal{O}$ be the local algebra of all\\nholomorphic function germs at the origin with the maximal ideal $m $. We study\\nthe $k$-th Tjurina algebra, defined by $ A_k(f): = \\\\mathcal{O} / \\\\left( f , m^k\\nJ(f) \\\\right) $, where $J(f)$ denotes the Jacobi ideal of $ \\\\mathcal{O}$. The\\nzeroth Tjurina algebra is well known to represent the tangent space of the base\\nspace of the semi-universal deformation of $(X, 0)$. Motivated by this\\nobservation, we explore the deformation of $(X,0)$ with respect to a fixed\\n$k$-residue point. We show that the tangent space of the corresponding\\ndeformation functor is a subspace of the $k$-th Tjurina algebra. Explicitly\\ncalculating the $k$-th Tjurina numbers, which correspond to the dimensions of\\nthe Tjurina algebra, plays a crucial role in understanding these deformations.\\nAccording to the results of Milnor and Orlik, the zeroth Tjurina number can be\\nexpressed explicitly in terms of the weights of the variables in $f$. However,\\nwe observe that for values of $k$ exceeding the multiplicity of $X$, the $k$-th\\nTjurina number becomes more intricate and is not solely determined by the\\nweights of variables. In this paper, we introduce a novel complex derived from\\nthe classical Koszul complex and obtain a computable formula for the $k$-th\\nTjurina numbers for all $ k \\\\geqslant 0 $. As applications, we calculate the\\n$k$-th Tjurina numbers for all weighted homogeneous singularities in three\\nvariables.\",\"PeriodicalId\":501063,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Geometry\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09384\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09384","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 $ (X,0) $ 表示由加权同余多项式 $ f $ 定义的孤立奇点。让 $ \mathcal{O}$ 是原点处最大理想 $m $ 的全全同形函数胚的局部代数。 我们研究 $k$-th Tjurina 代数,其定义为 $ A_k(f): = \mathcal{O} / \left( f , m^kJ(f) \right)./ \left( f , m^kJ(f) \right) $,其中 $J(f)$ 表示 $ \mathcal{O}$ 的雅可比理想。众所周知,zeroth Tjurina 代数代表了 $(X, 0)$ 的半泛函变形基空间的切空间。受此启发,我们探讨了 $(X,0)$ 相对于固定 $k$ 残留点的变形。我们证明了相应变形函子的切空间是 $k$-th Tjurina 代数的子空间。明确计算 $k$-th Tjurina 数字(对应于 Tjurina 代数的维数)对理解这些变形起着至关重要的作用。根据米尔诺和奥利克的结果,第零 Tjurina 数字可以用 $f$ 中变量的权值来明确表达。然而,我们注意到,当 $k$ 的值超过 $X$ 的倍率时,$k$-th 特朱里纳数变得更加复杂,而且并不完全由变量的权重决定。在本文中,我们引入了一个从经典科斯祖尔复数衍生而来的新复数,并获得了所有 $k$ \geqslant 0 $ 的 $k$-thTjurina 数的可计算公式。作为应用,我们计算了三变量中所有加权同质奇点的 $k$-th Tjurina 数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the $k$-th Tjurina number of weighted homogeneous singularities
Let $ (X,0) $ denote an isolated singularity defined by a weighted homogeneous polynomial $ f $. Let $ \mathcal{O}$ be the local algebra of all holomorphic function germs at the origin with the maximal ideal $m $. We study the $k$-th Tjurina algebra, defined by $ A_k(f): = \mathcal{O} / \left( f , m^k J(f) \right) $, where $J(f)$ denotes the Jacobi ideal of $ \mathcal{O}$. The zeroth Tjurina algebra is well known to represent the tangent space of the base space of the semi-universal deformation of $(X, 0)$. Motivated by this observation, we explore the deformation of $(X,0)$ with respect to a fixed $k$-residue point. We show that the tangent space of the corresponding deformation functor is a subspace of the $k$-th Tjurina algebra. Explicitly calculating the $k$-th Tjurina numbers, which correspond to the dimensions of the Tjurina algebra, plays a crucial role in understanding these deformations. According to the results of Milnor and Orlik, the zeroth Tjurina number can be expressed explicitly in terms of the weights of the variables in $f$. However, we observe that for values of $k$ exceeding the multiplicity of $X$, the $k$-th Tjurina number becomes more intricate and is not solely determined by the weights of variables. In this paper, we introduce a novel complex derived from the classical Koszul complex and obtain a computable formula for the $k$-th Tjurina numbers for all $ k \geqslant 0 $. As applications, we calculate the $k$-th Tjurina numbers for all weighted homogeneous singularities in three variables.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信