{"title":"指数为 1 的法诺三折超曲面的 K 稳定性","authors":"Livia Campo, Takuzo Okada","doi":"arxiv-2409.09492","DOIUrl":null,"url":null,"abstract":"We settle the problem of K-stability of quasi-smooth Fano 3-fold\nhypersurfaces with Fano index 1 by providing lower bounds for their delta\ninvariants. We use the method introduced by Abban and Zhuang for computing\nlower bounds of delta invariants on flags of hypersurfaces in the Fano 3-fold.","PeriodicalId":501063,"journal":{"name":"arXiv - MATH - Algebraic Geometry","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"K-stablity of Fano threefold hypersurfaces of index 1\",\"authors\":\"Livia Campo, Takuzo Okada\",\"doi\":\"arxiv-2409.09492\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We settle the problem of K-stability of quasi-smooth Fano 3-fold\\nhypersurfaces with Fano index 1 by providing lower bounds for their delta\\ninvariants. We use the method introduced by Abban and Zhuang for computing\\nlower bounds of delta invariants on flags of hypersurfaces in the Fano 3-fold.\",\"PeriodicalId\":501063,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Geometry\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09492\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09492","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们解决了法诺指数为 1 的准光滑法诺 3 折叠超曲面的 K 稳定性问题,提供了它们的三角变量下界。我们使用阿班和庄引入的方法计算法诺 3 折叠超曲面旗上的三角变量下界。
K-stablity of Fano threefold hypersurfaces of index 1
We settle the problem of K-stability of quasi-smooth Fano 3-fold
hypersurfaces with Fano index 1 by providing lower bounds for their delta
invariants. We use the method introduced by Abban and Zhuang for computing
lower bounds of delta invariants on flags of hypersurfaces in the Fano 3-fold.