旗变体上线度的 K 理论格罗莫夫-维滕不变式

Anders S. Buch, Linda Chen, Weihong Xu
{"title":"旗变体上线度的 K 理论格罗莫夫-维滕不变式","authors":"Anders S. Buch, Linda Chen, Weihong Xu","doi":"arxiv-2409.09580","DOIUrl":null,"url":null,"abstract":"A homology class $d \\in H_2(X)$ of a complex flag variety $X = G/P$ is called\na line degree if the moduli space $\\overline{M}_{0,0}(X,d)$ of 0-pointed stable\nmaps to $X$ of degree $d$ is also a flag variety $G/P'$. We prove a quantum\nequals classical formula stating that any $n$-pointed (equivariant,\nK-theoretic, genus zero) Gromov-Witten invariant of line degree on $X$ is equal\nto a classical intersection number computed on the flag variety $G/P'$. We also\nprove an $n$-pointed analogue of the Peterson comparison formula stating that\nthese invariants coincide with Gromov-Witten invariants of the variety of\ncomplete flags $G/B$. Our formulas make it straightforward to compute the big\nquantum K-theory ring of $X$ modulo degrees larger than line degrees.","PeriodicalId":501063,"journal":{"name":"arXiv - MATH - Algebraic Geometry","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"K-theoretic Gromov-Witten invariants of line degrees on flag varieties\",\"authors\":\"Anders S. Buch, Linda Chen, Weihong Xu\",\"doi\":\"arxiv-2409.09580\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A homology class $d \\\\in H_2(X)$ of a complex flag variety $X = G/P$ is called\\na line degree if the moduli space $\\\\overline{M}_{0,0}(X,d)$ of 0-pointed stable\\nmaps to $X$ of degree $d$ is also a flag variety $G/P'$. We prove a quantum\\nequals classical formula stating that any $n$-pointed (equivariant,\\nK-theoretic, genus zero) Gromov-Witten invariant of line degree on $X$ is equal\\nto a classical intersection number computed on the flag variety $G/P'$. We also\\nprove an $n$-pointed analogue of the Peterson comparison formula stating that\\nthese invariants coincide with Gromov-Witten invariants of the variety of\\ncomplete flags $G/B$. Our formulas make it straightforward to compute the big\\nquantum K-theory ring of $X$ modulo degrees larger than line degrees.\",\"PeriodicalId\":501063,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Geometry\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09580\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

如果度数为 $d$ 的 0 点稳定映射 $X$ 的模空间 $overline{M}_{0,0}(X,d)$ 也是旗综 $G/P'$,那么复旗综 $X = G/P$ 的 H_2(X)$中的一个同调类 $d \ 称为线度。我们证明了一个量等经典公式,即在 $X$ 上任何 $n$ 点的(等变的、K 理论的、零属的)线度格罗莫夫-维滕不变式都等于在旗综 $G/P'$ 上计算的经典交集数。我们还证明了彼得森(Peterson)比较公式的一个 $n$ 点类似公式,即这些不变式与完整旗簇 $G/B$ 的格罗莫夫-维滕不变式重合。我们的公式使得计算 $X$ 的大量子 K 理论环变得简单易行,其模数大于线度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
K-theoretic Gromov-Witten invariants of line degrees on flag varieties
A homology class $d \in H_2(X)$ of a complex flag variety $X = G/P$ is called a line degree if the moduli space $\overline{M}_{0,0}(X,d)$ of 0-pointed stable maps to $X$ of degree $d$ is also a flag variety $G/P'$. We prove a quantum equals classical formula stating that any $n$-pointed (equivariant, K-theoretic, genus zero) Gromov-Witten invariant of line degree on $X$ is equal to a classical intersection number computed on the flag variety $G/P'$. We also prove an $n$-pointed analogue of the Peterson comparison formula stating that these invariants coincide with Gromov-Witten invariants of the variety of complete flags $G/B$. Our formulas make it straightforward to compute the big quantum K-theory ring of $X$ modulo degrees larger than line degrees.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信