论格拉斯曼等变量子微分方程与 qKZ 差分方程的 Satake 对应关系

Giordano Cotti, Alexander Varchenko
{"title":"论格拉斯曼等变量子微分方程与 qKZ 差分方程的 Satake 对应关系","authors":"Giordano Cotti, Alexander Varchenko","doi":"arxiv-2409.09657","DOIUrl":null,"url":null,"abstract":"We consider the joint system of equivariant quantum differential equations\n(qDE) and qKZ difference equations for the Grassmannian $G(k,n)$, which\nparametrizes $k$-dimensional subspaces of $\\mathbb{C}^n$. First, we establish a\nconnection between this joint system for $G(k,n)$ and the corresponding system\nfor the projective space $\\mathbb{P}^{n-1}$. Specifically, we show that, under\nsuitable \\textit{Satake identifications} of the equivariant cohomologies of\n$G(k,n)$ and $\\mathbb{P}^{n-1}$, the joint system for $G(k,n)$ is gauge\nequivalent to a differential-difference system on the $k$-th exterior power of\nthe cohomology of $\\mathbb{P}^{n-1}$. Secondly, we demonstrate that the \\textcyr{B}-theorem for Grassmannians, as\nstated in arXiv:1909.06582, arXiv:2203.03039, is compatible with the Satake\nidentification. This implies that the \\textcyr{B}-theorem for\n$\\mathbb{P}^{n-1}$ extends to $G(k,n)$ through the Satake identification. As a\nconsequence, we derive determinantal formulas and new integral representations\nfor multi-dimensional hypergeometric solutions of the joint qDE and qKZ system\nfor $G(k,n)$. Finally, we analyze the Stokes phenomenon for the joint system of qDE and qKZ\nequations associated with $G(k,n)$. We prove that the Stokes bases of solutions\ncorrespond to explicit $K$-theoretical classes of full exceptional collections\nin the derived category of equivariant coherent sheaves on $G(k,n)$.\nFurthermore, we show that the Stokes matrices equal the Gram matrices of the\nequivariant Euler-Poincar\\'e-Grothendieck pairing with respect to these\nexceptional $K$-theoretical bases.","PeriodicalId":501063,"journal":{"name":"arXiv - MATH - Algebraic Geometry","volume":"116 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Satake correspondence for the equivariant quantum differential equations and qKZ difference equations of Grassmannians\",\"authors\":\"Giordano Cotti, Alexander Varchenko\",\"doi\":\"arxiv-2409.09657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the joint system of equivariant quantum differential equations\\n(qDE) and qKZ difference equations for the Grassmannian $G(k,n)$, which\\nparametrizes $k$-dimensional subspaces of $\\\\mathbb{C}^n$. First, we establish a\\nconnection between this joint system for $G(k,n)$ and the corresponding system\\nfor the projective space $\\\\mathbb{P}^{n-1}$. Specifically, we show that, under\\nsuitable \\\\textit{Satake identifications} of the equivariant cohomologies of\\n$G(k,n)$ and $\\\\mathbb{P}^{n-1}$, the joint system for $G(k,n)$ is gauge\\nequivalent to a differential-difference system on the $k$-th exterior power of\\nthe cohomology of $\\\\mathbb{P}^{n-1}$. Secondly, we demonstrate that the \\\\textcyr{B}-theorem for Grassmannians, as\\nstated in arXiv:1909.06582, arXiv:2203.03039, is compatible with the Satake\\nidentification. This implies that the \\\\textcyr{B}-theorem for\\n$\\\\mathbb{P}^{n-1}$ extends to $G(k,n)$ through the Satake identification. As a\\nconsequence, we derive determinantal formulas and new integral representations\\nfor multi-dimensional hypergeometric solutions of the joint qDE and qKZ system\\nfor $G(k,n)$. Finally, we analyze the Stokes phenomenon for the joint system of qDE and qKZ\\nequations associated with $G(k,n)$. We prove that the Stokes bases of solutions\\ncorrespond to explicit $K$-theoretical classes of full exceptional collections\\nin the derived category of equivariant coherent sheaves on $G(k,n)$.\\nFurthermore, we show that the Stokes matrices equal the Gram matrices of the\\nequivariant Euler-Poincar\\\\'e-Grothendieck pairing with respect to these\\nexceptional $K$-theoretical bases.\",\"PeriodicalId\":501063,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Geometry\",\"volume\":\"116 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09657\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09657","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑格拉斯曼$G(k,n)$的等变量子微分方程(qDE)和qKZ差分方程的联合系统,它参数化了$\mathbb{C}^n$的k$维子空间。首先,我们建立了$G(k,n)$的联合系统与投影空间$\mathbb{P}^{n-1}$的相应系统之间的联系。具体地说,我们证明在$G(k,n)$和$mathbb{P}^{n-1}$的等变同调的合适的(textit{Satake identifications})条件下,$G(k,n)$的联合系统与$mathbb{P}^{n-1}$同调的$k$外部幂上的微分差分系统是等价的。其次,我们证明了arXiv:1909.06582和arXiv:2203.03039中阐述的格拉斯曼的(textcyr{B}定理)与 "佐竹识别 "是相容的。这意味着通过 Satake 识别,$mathbb{P}^{n-1}$ 的 \textcyr{B}-theorem 可以扩展到 $G(k,n)$。因此,我们推导出了$G(k,n)$的qDE和qKZ联合系统的多维超几何解的行列式公式和新的积分表示。最后,我们分析了与 $G(k,n)$ 相关的 qDE 和 qKZ 联合方程组的斯托克斯现象。此外,我们还证明斯托克斯矩阵等于关于这些特殊的 $K$ 理论基的等变欧拉-平卡/'e-格罗thendieck 对的格兰矩阵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Satake correspondence for the equivariant quantum differential equations and qKZ difference equations of Grassmannians
We consider the joint system of equivariant quantum differential equations (qDE) and qKZ difference equations for the Grassmannian $G(k,n)$, which parametrizes $k$-dimensional subspaces of $\mathbb{C}^n$. First, we establish a connection between this joint system for $G(k,n)$ and the corresponding system for the projective space $\mathbb{P}^{n-1}$. Specifically, we show that, under suitable \textit{Satake identifications} of the equivariant cohomologies of $G(k,n)$ and $\mathbb{P}^{n-1}$, the joint system for $G(k,n)$ is gauge equivalent to a differential-difference system on the $k$-th exterior power of the cohomology of $\mathbb{P}^{n-1}$. Secondly, we demonstrate that the \textcyr{B}-theorem for Grassmannians, as stated in arXiv:1909.06582, arXiv:2203.03039, is compatible with the Satake identification. This implies that the \textcyr{B}-theorem for $\mathbb{P}^{n-1}$ extends to $G(k,n)$ through the Satake identification. As a consequence, we derive determinantal formulas and new integral representations for multi-dimensional hypergeometric solutions of the joint qDE and qKZ system for $G(k,n)$. Finally, we analyze the Stokes phenomenon for the joint system of qDE and qKZ equations associated with $G(k,n)$. We prove that the Stokes bases of solutions correspond to explicit $K$-theoretical classes of full exceptional collections in the derived category of equivariant coherent sheaves on $G(k,n)$. Furthermore, we show that the Stokes matrices equal the Gram matrices of the equivariant Euler-Poincar\'e-Grothendieck pairing with respect to these exceptional $K$-theoretical bases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信