朗兰兹几何猜想 V 的证明:乘数一定理

Dennis Gaitsgory, Sam Raskin
{"title":"朗兰兹几何猜想 V 的证明:乘数一定理","authors":"Dennis Gaitsgory, Sam Raskin","doi":"arxiv-2409.09856","DOIUrl":null,"url":null,"abstract":"This is the final paper in the series of five, in which we prove the\ngeometric Langlands conjecture (GLC). We conclude the proof of GLC by showing\nthat there exists a unique (up to tensoring up by a vector space) Hecke\neigensheaf corresponding to an irreducible local system (hence, the title of\nthe paper). We achieve this by analyzing the geometry of the stack of local\nsystems.","PeriodicalId":501063,"journal":{"name":"arXiv - MATH - Algebraic Geometry","volume":"132 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proof of the geometric Langlands conjecture V: the multiplicity one theorem\",\"authors\":\"Dennis Gaitsgory, Sam Raskin\",\"doi\":\"arxiv-2409.09856\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This is the final paper in the series of five, in which we prove the\\ngeometric Langlands conjecture (GLC). We conclude the proof of GLC by showing\\nthat there exists a unique (up to tensoring up by a vector space) Hecke\\neigensheaf corresponding to an irreducible local system (hence, the title of\\nthe paper). We achieve this by analyzing the geometry of the stack of local\\nsystems.\",\"PeriodicalId\":501063,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Geometry\",\"volume\":\"132 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09856\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09856","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这是五篇系列论文中的最后一篇,我们在其中证明了几何朗兰兹猜想(GLC)。我们通过证明存在一个与不可还原局部系统相对应的唯一(通过向量空间向上张弦)赫克凯伊根舍夫(本文标题即由此而来)来结束对 GLC 的证明。我们通过分析局部系统堆栈的几何学来实现这一点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Proof of the geometric Langlands conjecture V: the multiplicity one theorem
This is the final paper in the series of five, in which we prove the geometric Langlands conjecture (GLC). We conclude the proof of GLC by showing that there exists a unique (up to tensoring up by a vector space) Hecke eigensheaf corresponding to an irreducible local system (hence, the title of the paper). We achieve this by analyzing the geometry of the stack of local systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信