阶式同构的复杂性

Pub Date : 2024-09-18 DOI:10.1007/s00454-024-00687-1
Greg Aloupis, John Iacono, Stefan Langerman, Özgür Özkan, Stefanie Wuhrer
{"title":"阶式同构的复杂性","authors":"Greg Aloupis, John Iacono, Stefan Langerman, Özgür Özkan, Stefanie Wuhrer","doi":"10.1007/s00454-024-00687-1","DOIUrl":null,"url":null,"abstract":"<p>The order type of a point set in <span>\\(\\mathbb {R}^d\\)</span> maps each <span>\\((d{+}1)\\)</span>-tuple of points to its orientation (e.g., clockwise or counterclockwise in <span>\\(\\mathbb {R}^2\\)</span>). Two point sets <i>X</i> and <i>Y</i> have the same order type if there exists a bijection <i>f</i> from <i>X</i> to <i>Y</i> for which every <span>\\((d{+}1)\\)</span>-tuple <span>\\((a_1,a_2,\\ldots ,a_{d+1})\\)</span> of <i>X</i> and the corresponding tuple <span>\\((f(a_1),f(a_2),\\ldots ,f(a_{d+1}))\\)</span> in <i>Y</i> have the same orientation. In this paper we investigate the complexity of determining whether two point sets have the same order type. We provide an <span>\\(O(n^d)\\)</span> algorithm for this task, thereby improving upon the <span>\\(O(n^{\\lfloor {3d/2}\\rfloor })\\)</span> algorithm of Goodman and Pollack (SIAM J. Comput. 12(3):484–507, 1983). The algorithm uses only order type queries and also works for abstract order types (or acyclic oriented matroids). Our algorithm is optimal, both in the abstract setting and for realizable points sets if the algorithm only uses order type queries.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Complexity of Order Type Isomorphism\",\"authors\":\"Greg Aloupis, John Iacono, Stefan Langerman, Özgür Özkan, Stefanie Wuhrer\",\"doi\":\"10.1007/s00454-024-00687-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The order type of a point set in <span>\\\\(\\\\mathbb {R}^d\\\\)</span> maps each <span>\\\\((d{+}1)\\\\)</span>-tuple of points to its orientation (e.g., clockwise or counterclockwise in <span>\\\\(\\\\mathbb {R}^2\\\\)</span>). Two point sets <i>X</i> and <i>Y</i> have the same order type if there exists a bijection <i>f</i> from <i>X</i> to <i>Y</i> for which every <span>\\\\((d{+}1)\\\\)</span>-tuple <span>\\\\((a_1,a_2,\\\\ldots ,a_{d+1})\\\\)</span> of <i>X</i> and the corresponding tuple <span>\\\\((f(a_1),f(a_2),\\\\ldots ,f(a_{d+1}))\\\\)</span> in <i>Y</i> have the same orientation. In this paper we investigate the complexity of determining whether two point sets have the same order type. We provide an <span>\\\\(O(n^d)\\\\)</span> algorithm for this task, thereby improving upon the <span>\\\\(O(n^{\\\\lfloor {3d/2}\\\\rfloor })\\\\)</span> algorithm of Goodman and Pollack (SIAM J. Comput. 12(3):484–507, 1983). The algorithm uses only order type queries and also works for abstract order types (or acyclic oriented matroids). Our algorithm is optimal, both in the abstract setting and for realizable points sets if the algorithm only uses order type queries.\\n</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00454-024-00687-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-024-00687-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在 \(\mathbb {R}^d\)中一个点集的秩类型映射每个 \((d{+}1)\)-tuple of points 到它的方向(例如,在 \(\mathbb {R}^2\)中顺时针或逆时针)。如果存在从 X 到 Y 的双投射 f,且 X 中的每\((d{+}1)\)-元组\((a_1,a_2,\ldots ,a_{d+1})\)和 Y 中的相应元组\(f(a_1),f(a_2),\ldots ,f(a_{d+1}))具有相同的方向,则两个点集 X 和 Y 具有相同的阶类型。本文研究了判断两个点集是否具有相同阶类型的复杂性。我们为这个任务提供了一个(O(n^d))算法,从而改进了 Goodman 和 Pollack 的(O(n^{\lfloor {3d/2}\rfloor })算法(SIAM J. Comput.12(3):484-507, 1983).该算法只使用阶类型查询,也适用于抽象阶类型(或非循环定向矩阵)。如果算法只使用阶类型查询,那么我们的算法无论是在抽象环境中还是对于可实现的点集都是最优的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The Complexity of Order Type Isomorphism

分享
查看原文
The Complexity of Order Type Isomorphism

The order type of a point set in \(\mathbb {R}^d\) maps each \((d{+}1)\)-tuple of points to its orientation (e.g., clockwise or counterclockwise in \(\mathbb {R}^2\)). Two point sets X and Y have the same order type if there exists a bijection f from X to Y for which every \((d{+}1)\)-tuple \((a_1,a_2,\ldots ,a_{d+1})\) of X and the corresponding tuple \((f(a_1),f(a_2),\ldots ,f(a_{d+1}))\) in Y have the same orientation. In this paper we investigate the complexity of determining whether two point sets have the same order type. We provide an \(O(n^d)\) algorithm for this task, thereby improving upon the \(O(n^{\lfloor {3d/2}\rfloor })\) algorithm of Goodman and Pollack (SIAM J. Comput. 12(3):484–507, 1983). The algorithm uses only order type queries and also works for abstract order types (or acyclic oriented matroids). Our algorithm is optimal, both in the abstract setting and for realizable points sets if the algorithm only uses order type queries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信