{"title":"对数恩里克变种","authors":"Samuel Boissiere, Chiara Camere, Alessandra Sarti","doi":"arxiv-2409.09160","DOIUrl":null,"url":null,"abstract":"We introduce logarithmic Enriques varieties as a singular analogue of\nEnriques manifolds, generalizing the notion of log-Enriques surfaces introduced\nby Zhang. We focus then on the properties of the subfamily of log-Enriques\nvarieties that admit a quasi-\\'etale cover by a singular symplectic variety and\nwe give many examples.","PeriodicalId":501063,"journal":{"name":"arXiv - MATH - Algebraic Geometry","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Logarithmic Enriques varieties\",\"authors\":\"Samuel Boissiere, Chiara Camere, Alessandra Sarti\",\"doi\":\"arxiv-2409.09160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce logarithmic Enriques varieties as a singular analogue of\\nEnriques manifolds, generalizing the notion of log-Enriques surfaces introduced\\nby Zhang. We focus then on the properties of the subfamily of log-Enriques\\nvarieties that admit a quasi-\\\\'etale cover by a singular symplectic variety and\\nwe give many examples.\",\"PeriodicalId\":501063,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Geometry\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09160\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We introduce logarithmic Enriques varieties as a singular analogue of
Enriques manifolds, generalizing the notion of log-Enriques surfaces introduced
by Zhang. We focus then on the properties of the subfamily of log-Enriques
varieties that admit a quasi-\'etale cover by a singular symplectic variety and
we give many examples.