对数恩里克变种

Samuel Boissiere, Chiara Camere, Alessandra Sarti
{"title":"对数恩里克变种","authors":"Samuel Boissiere, Chiara Camere, Alessandra Sarti","doi":"arxiv-2409.09160","DOIUrl":null,"url":null,"abstract":"We introduce logarithmic Enriques varieties as a singular analogue of\nEnriques manifolds, generalizing the notion of log-Enriques surfaces introduced\nby Zhang. We focus then on the properties of the subfamily of log-Enriques\nvarieties that admit a quasi-\\'etale cover by a singular symplectic variety and\nwe give many examples.","PeriodicalId":501063,"journal":{"name":"arXiv - MATH - Algebraic Geometry","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Logarithmic Enriques varieties\",\"authors\":\"Samuel Boissiere, Chiara Camere, Alessandra Sarti\",\"doi\":\"arxiv-2409.09160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce logarithmic Enriques varieties as a singular analogue of\\nEnriques manifolds, generalizing the notion of log-Enriques surfaces introduced\\nby Zhang. We focus then on the properties of the subfamily of log-Enriques\\nvarieties that admit a quasi-\\\\'etale cover by a singular symplectic variety and\\nwe give many examples.\",\"PeriodicalId\":501063,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Geometry\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09160\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们引入对数恩里克流形作为恩里克流形的奇异类比,概括了张五常提出的对数恩里克曲面的概念。然后,我们将重点放在对数恩里克流形亚族的性质上,这些亚族允许奇异交映流形的准(quasi/'etale)覆盖,我们给出了许多例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Logarithmic Enriques varieties
We introduce logarithmic Enriques varieties as a singular analogue of Enriques manifolds, generalizing the notion of log-Enriques surfaces introduced by Zhang. We focus then on the properties of the subfamily of log-Enriques varieties that admit a quasi-\'etale cover by a singular symplectic variety and we give many examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信