pytom-match-pick:用于模板匹配自动分类的拓扑变换约束条件

Marten L. Chaillet, Sander Roet, Remco C. Veltkamp, Friedrich Förster
{"title":"pytom-match-pick:用于模板匹配自动分类的拓扑变换约束条件","authors":"Marten L. Chaillet, Sander Roet, Remco C. Veltkamp, Friedrich Förster","doi":"10.1101/2024.09.17.613497","DOIUrl":null,"url":null,"abstract":"Template matching (TM) in cryo-electron tomography (cryo-ET) enables in situ detection and localization of known macromolecules. However, TM faces challenges such as interfering features with a high signal-to-noise ratio and the need for manual curation of results. To address these challenges, we introduce pytom-match-pick, a GPU-accelerated, open-source command line interface for enhanced TM in cryo-ET. Using pytom-match-pick, we first quantify the effects of point spread function (PSF) weighting and show that a tilt-weighted PSF outperforms a binary wedge with a single defocus estimate. We also assess previously introduced background normalization methods for classification performance. This indicates that phase randomization is more effective than spectrum whitening in reducing false positives. Furthermore, a novel application of the tophat transform on score maps, combined with a dual-constraint thresholding strategy, reduces false positives and improves precision. We benchmarked pytom-match-pick on public datasets, demonstrating improved classification and localization of macromolecules like ribosomal subunits and proteasomes that led to fewer artifacts in subtomogram averages. This tool promises to advance visual proteomics by improving the efficiency and accuracy of macromolecule detection in cellular contexts.","PeriodicalId":501108,"journal":{"name":"bioRxiv - Molecular Biology","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"pytom-match-pick: a tophat-transform constraint for automated classification in template matching\",\"authors\":\"Marten L. Chaillet, Sander Roet, Remco C. Veltkamp, Friedrich Förster\",\"doi\":\"10.1101/2024.09.17.613497\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Template matching (TM) in cryo-electron tomography (cryo-ET) enables in situ detection and localization of known macromolecules. However, TM faces challenges such as interfering features with a high signal-to-noise ratio and the need for manual curation of results. To address these challenges, we introduce pytom-match-pick, a GPU-accelerated, open-source command line interface for enhanced TM in cryo-ET. Using pytom-match-pick, we first quantify the effects of point spread function (PSF) weighting and show that a tilt-weighted PSF outperforms a binary wedge with a single defocus estimate. We also assess previously introduced background normalization methods for classification performance. This indicates that phase randomization is more effective than spectrum whitening in reducing false positives. Furthermore, a novel application of the tophat transform on score maps, combined with a dual-constraint thresholding strategy, reduces false positives and improves precision. We benchmarked pytom-match-pick on public datasets, demonstrating improved classification and localization of macromolecules like ribosomal subunits and proteasomes that led to fewer artifacts in subtomogram averages. This tool promises to advance visual proteomics by improving the efficiency and accuracy of macromolecule detection in cellular contexts.\",\"PeriodicalId\":501108,\"journal\":{\"name\":\"bioRxiv - Molecular Biology\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Molecular Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.09.17.613497\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Molecular Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.17.613497","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

低温电子断层成像(cryo-ET)中的模板匹配(TM)技术可对已知大分子进行原位检测和定位。然而,模板匹配面临着高信噪比干扰特征以及需要人工整理结果等挑战。为了应对这些挑战,我们引入了pytom-match-pick,这是一个GPU加速的开源命令行界面,用于在低温电子显微镜中增强TM。利用 pytom-match-pick,我们首先量化了点扩散函数(PSF)加权的效果,并证明倾斜加权 PSF 优于具有单一离焦估计值的二元楔形。我们还对之前引入的背景归一化方法的分类性能进行了评估。结果表明,在减少误报方面,相位随机化比光谱增白更有效。此外,在分数图上应用新颖的 tophat 变换,并结合双约束阈值策略,可以减少误报并提高精确度。我们在公共数据集上对 pytom-match-pick 进行了基准测试,结果表明它改进了核糖体亚基和蛋白酶体等大分子的分类和定位,从而减少了子图平均值中的伪影。该工具有望提高细胞环境中大分子检测的效率和准确性,从而推动可视蛋白质组学的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
pytom-match-pick: a tophat-transform constraint for automated classification in template matching
Template matching (TM) in cryo-electron tomography (cryo-ET) enables in situ detection and localization of known macromolecules. However, TM faces challenges such as interfering features with a high signal-to-noise ratio and the need for manual curation of results. To address these challenges, we introduce pytom-match-pick, a GPU-accelerated, open-source command line interface for enhanced TM in cryo-ET. Using pytom-match-pick, we first quantify the effects of point spread function (PSF) weighting and show that a tilt-weighted PSF outperforms a binary wedge with a single defocus estimate. We also assess previously introduced background normalization methods for classification performance. This indicates that phase randomization is more effective than spectrum whitening in reducing false positives. Furthermore, a novel application of the tophat transform on score maps, combined with a dual-constraint thresholding strategy, reduces false positives and improves precision. We benchmarked pytom-match-pick on public datasets, demonstrating improved classification and localization of macromolecules like ribosomal subunits and proteasomes that led to fewer artifacts in subtomogram averages. This tool promises to advance visual proteomics by improving the efficiency and accuracy of macromolecule detection in cellular contexts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信