{"title":"用蛋白酶体抑制剂靶向 FUS-ALS 聚集","authors":"Amal Younis, Kanar Yassen, Kinneret Rozales, Tahani Kadah, Naseeb Saida, Anatoly Meller, Joyeeta Dutta Hazra, Ronit Heinrich, Flonia Levy-Adam, Shai Berlin, Reut Shalgi","doi":"10.1101/2024.09.17.613412","DOIUrl":null,"url":null,"abstract":"ALS, Amyotrophic lateral sclerosis, a devastating neurodegenerative disease (ND) with no cure, is often caused by abnormal cytosolic aggregation of RNA-binding proteins, the most well-known of which are TDP-43 and FUS. The proteasome is considered one of the major systems that degrades misfolded, including ND-associated, proteins, thereby acting to reduce aggregation, while inhibition of the proteasome increases aggregation. Unexpectedly, we found that proteasome inhibitor treatment significantly reduced ALS-associated mutant FUS aggregation in cells and in primary neurons. This is in sharp contrast to most other ND-associated aggregating proteins, including Huntingtin and TDP-43, for which proteasome inhibitors enhanced aggregation. We further found that this inhibitory effect is dependent on the transcription factor HSF1, suggesting that the underlying mechanism of this effect is transcriptionally-mediated. Since heat shock treatment did not show any effect on FUS aggregation, we hypothesized that proteasome inhibitors elicit a transcriptional program distinct of that of heat shock, which is protective of FUS aggregation. We identified BAG3, a co-chaperone that cooperates with HSP70 in reducing FUS aggregation, as a significant mediator of this effect. We therefore propose BBB-permeable proteasome inhibitors as a potential therapy specific to ALS-FUS.","PeriodicalId":501108,"journal":{"name":"bioRxiv - Molecular Biology","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Targeting FUS-ALS aggregation with Proteasome Inhibitors\",\"authors\":\"Amal Younis, Kanar Yassen, Kinneret Rozales, Tahani Kadah, Naseeb Saida, Anatoly Meller, Joyeeta Dutta Hazra, Ronit Heinrich, Flonia Levy-Adam, Shai Berlin, Reut Shalgi\",\"doi\":\"10.1101/2024.09.17.613412\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ALS, Amyotrophic lateral sclerosis, a devastating neurodegenerative disease (ND) with no cure, is often caused by abnormal cytosolic aggregation of RNA-binding proteins, the most well-known of which are TDP-43 and FUS. The proteasome is considered one of the major systems that degrades misfolded, including ND-associated, proteins, thereby acting to reduce aggregation, while inhibition of the proteasome increases aggregation. Unexpectedly, we found that proteasome inhibitor treatment significantly reduced ALS-associated mutant FUS aggregation in cells and in primary neurons. This is in sharp contrast to most other ND-associated aggregating proteins, including Huntingtin and TDP-43, for which proteasome inhibitors enhanced aggregation. We further found that this inhibitory effect is dependent on the transcription factor HSF1, suggesting that the underlying mechanism of this effect is transcriptionally-mediated. Since heat shock treatment did not show any effect on FUS aggregation, we hypothesized that proteasome inhibitors elicit a transcriptional program distinct of that of heat shock, which is protective of FUS aggregation. We identified BAG3, a co-chaperone that cooperates with HSP70 in reducing FUS aggregation, as a significant mediator of this effect. We therefore propose BBB-permeable proteasome inhibitors as a potential therapy specific to ALS-FUS.\",\"PeriodicalId\":501108,\"journal\":{\"name\":\"bioRxiv - Molecular Biology\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Molecular Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.09.17.613412\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Molecular Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.17.613412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Targeting FUS-ALS aggregation with Proteasome Inhibitors
ALS, Amyotrophic lateral sclerosis, a devastating neurodegenerative disease (ND) with no cure, is often caused by abnormal cytosolic aggregation of RNA-binding proteins, the most well-known of which are TDP-43 and FUS. The proteasome is considered one of the major systems that degrades misfolded, including ND-associated, proteins, thereby acting to reduce aggregation, while inhibition of the proteasome increases aggregation. Unexpectedly, we found that proteasome inhibitor treatment significantly reduced ALS-associated mutant FUS aggregation in cells and in primary neurons. This is in sharp contrast to most other ND-associated aggregating proteins, including Huntingtin and TDP-43, for which proteasome inhibitors enhanced aggregation. We further found that this inhibitory effect is dependent on the transcription factor HSF1, suggesting that the underlying mechanism of this effect is transcriptionally-mediated. Since heat shock treatment did not show any effect on FUS aggregation, we hypothesized that proteasome inhibitors elicit a transcriptional program distinct of that of heat shock, which is protective of FUS aggregation. We identified BAG3, a co-chaperone that cooperates with HSP70 in reducing FUS aggregation, as a significant mediator of this effect. We therefore propose BBB-permeable proteasome inhibitors as a potential therapy specific to ALS-FUS.