最接近法则

M. N. Tarabishy
{"title":"最接近法则","authors":"M. N. Tarabishy","doi":"arxiv-2409.09097","DOIUrl":null,"url":null,"abstract":"In this work, we introduce the Law of Closest Approach which is derived from\nthe properties of conic orbits and can be considered an addendum to the laws of\nKepler. It states that on the closest approach, the distance between the\nobjects is minimal and the velocity vector is perpendicular to the position\nvector with maximum speed. The ratio of twice the kinetic energy to the\nnegative potential energy is equal to the eccentricity plus one. The advantage\nof this law is that both speed and position are at extremum making the\ncalculation of the eccentricity more robust.","PeriodicalId":501565,"journal":{"name":"arXiv - PHYS - Physics Education","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Law of Closest Approach\",\"authors\":\"M. N. Tarabishy\",\"doi\":\"arxiv-2409.09097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we introduce the Law of Closest Approach which is derived from\\nthe properties of conic orbits and can be considered an addendum to the laws of\\nKepler. It states that on the closest approach, the distance between the\\nobjects is minimal and the velocity vector is perpendicular to the position\\nvector with maximum speed. The ratio of twice the kinetic energy to the\\nnegative potential energy is equal to the eccentricity plus one. The advantage\\nof this law is that both speed and position are at extremum making the\\ncalculation of the eccentricity more robust.\",\"PeriodicalId\":501565,\"journal\":{\"name\":\"arXiv - PHYS - Physics Education\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Physics Education\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09097\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Physics Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们引入了 "最接近定律"(Law of Closest Approach),该定律源于圆锥轨道的特性,可视为开普勒定律的增补。该定律指出,在最接近时,天体之间的距离最小,速度矢量垂直于位置矢量,速度最大。两倍动能与负势能之比等于偏心率加一。该定律的优点是速度和位置都处于极值,从而使偏心率的计算更加稳健。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Law of Closest Approach
In this work, we introduce the Law of Closest Approach which is derived from the properties of conic orbits and can be considered an addendum to the laws of Kepler. It states that on the closest approach, the distance between the objects is minimal and the velocity vector is perpendicular to the position vector with maximum speed. The ratio of twice the kinetic energy to the negative potential energy is equal to the eccentricity plus one. The advantage of this law is that both speed and position are at extremum making the calculation of the eccentricity more robust.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信