双位函数类的关联性及其对三角准则类的影响

Yun-Mao Zhang, Xue-ping Wang
{"title":"双位函数类的关联性及其对三角准则类的影响","authors":"Yun-Mao Zhang, Xue-ping Wang","doi":"arxiv-2409.09037","DOIUrl":null,"url":null,"abstract":"This article characterizes the associativity of two-place functions $T:\n[0,1]^2\\rightarrow [0,1]$ defined by $T(x,y)=f^{(-1)}(F(f(x),f(y)))$ where\n$F:[0,1]^2\\rightarrow[0,1]$ is a triangular norm (even a triangular subnorm),\n$f: [0,1]\\rightarrow [0,1]$ is a strictly increasing function and\n$f^{(-1)}:[0,1]\\rightarrow[0,1]$ is the pseudo-inverse of $f$. We prove that\nthe associativity of functions $T$ only depends on the range of $f$, which is\nused to give a sufficient and necessary condition for the function $T$ being\nassociative when the triangular norm $F$ is an ordinal sum of triangular norms\nand an ordinal sum of triangular subnorms in the sense of A. H. Clifford,\nrespectively. These results finally are applied for describing classes of\ntriangular norms generated by strictly increasing functions.","PeriodicalId":501502,"journal":{"name":"arXiv - MATH - General Mathematics","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Associativity of a class of two-place functions and its consequences for classes of triangular norms\",\"authors\":\"Yun-Mao Zhang, Xue-ping Wang\",\"doi\":\"arxiv-2409.09037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article characterizes the associativity of two-place functions $T:\\n[0,1]^2\\\\rightarrow [0,1]$ defined by $T(x,y)=f^{(-1)}(F(f(x),f(y)))$ where\\n$F:[0,1]^2\\\\rightarrow[0,1]$ is a triangular norm (even a triangular subnorm),\\n$f: [0,1]\\\\rightarrow [0,1]$ is a strictly increasing function and\\n$f^{(-1)}:[0,1]\\\\rightarrow[0,1]$ is the pseudo-inverse of $f$. We prove that\\nthe associativity of functions $T$ only depends on the range of $f$, which is\\nused to give a sufficient and necessary condition for the function $T$ being\\nassociative when the triangular norm $F$ is an ordinal sum of triangular norms\\nand an ordinal sum of triangular subnorms in the sense of A. H. Clifford,\\nrespectively. These results finally are applied for describing classes of\\ntriangular norms generated by strictly increasing functions.\",\"PeriodicalId\":501502,\"journal\":{\"name\":\"arXiv - MATH - General Mathematics\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - General Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文描述了由 $T(x,y)=f^{(-1)}(F(f(x),f(y)))$ 定义的两位置函数 $T:[0,1]^2\rightarrow [0,1]$ 的关联性,其中$F:[0,1]^2/rightarrow[0,1]$ 是三角规范(甚至是三角子规范),$f:[0,1]\rightarrow [0,1]$ 是严格递增函数,$f^{(-1)}:[0,1]\rightarrow[0,1]$ 是 $f$ 的伪逆。我们证明了函数 $T$ 的关联性只取决于 $f$ 的范围,从而给出了当三角形规范 $F$ 分别是 A. H. Clifford 意义上的三角形规范的序数和和三角形子规范的序数和时,函数 $T$ 具有关联性的充分必要条件。这些结果最后被应用于描述由严格递增函数产生的三角形规范类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Associativity of a class of two-place functions and its consequences for classes of triangular norms
This article characterizes the associativity of two-place functions $T: [0,1]^2\rightarrow [0,1]$ defined by $T(x,y)=f^{(-1)}(F(f(x),f(y)))$ where $F:[0,1]^2\rightarrow[0,1]$ is a triangular norm (even a triangular subnorm), $f: [0,1]\rightarrow [0,1]$ is a strictly increasing function and $f^{(-1)}:[0,1]\rightarrow[0,1]$ is the pseudo-inverse of $f$. We prove that the associativity of functions $T$ only depends on the range of $f$, which is used to give a sufficient and necessary condition for the function $T$ being associative when the triangular norm $F$ is an ordinal sum of triangular norms and an ordinal sum of triangular subnorms in the sense of A. H. Clifford, respectively. These results finally are applied for describing classes of triangular norms generated by strictly increasing functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信