论涉及卢卡斯数的某些二阶方程

Priyabrata Mandal
{"title":"论涉及卢卡斯数的某些二阶方程","authors":"Priyabrata Mandal","doi":"arxiv-2409.10152","DOIUrl":null,"url":null,"abstract":"This paper explores the intricate relationships between Lucas numbers and\nDiophantine equations, offering significant contributions to the field of\nnumber theory. We first establish that the equation regarding Lucas number $L_n\n= 3x^2$ has a unique solution in positive integers, specifically $(n, x) = (2,\n1)$, by analyzing the congruence properties of Lucas numbers modulo $4$ and\nJacobi symbols. We also prove that a Fibonacci number $F_n$ can be of the form\n$F_n=5x^2$ only when $(n,x)=(5,1)$. Expanding our investigation, we prove that\nthe equation $L_n^2+L_{n+1}^2=x^2$ admits a unique solution $(n,x)=(2,5)$. In\nconclusion, we determine all non-negative integer solutions $(n, \\alpha, x)$ to\nthe equation $L_n^\\alpha + L_{n+1}^\\alpha = x^2$, where $L_n$ represents the\n$n$-th term in the Lucas sequence.","PeriodicalId":501502,"journal":{"name":"arXiv - MATH - General Mathematics","volume":"116 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Certain Diophantine Equations Involving Lucas Numbers\",\"authors\":\"Priyabrata Mandal\",\"doi\":\"arxiv-2409.10152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper explores the intricate relationships between Lucas numbers and\\nDiophantine equations, offering significant contributions to the field of\\nnumber theory. We first establish that the equation regarding Lucas number $L_n\\n= 3x^2$ has a unique solution in positive integers, specifically $(n, x) = (2,\\n1)$, by analyzing the congruence properties of Lucas numbers modulo $4$ and\\nJacobi symbols. We also prove that a Fibonacci number $F_n$ can be of the form\\n$F_n=5x^2$ only when $(n,x)=(5,1)$. Expanding our investigation, we prove that\\nthe equation $L_n^2+L_{n+1}^2=x^2$ admits a unique solution $(n,x)=(2,5)$. In\\nconclusion, we determine all non-negative integer solutions $(n, \\\\alpha, x)$ to\\nthe equation $L_n^\\\\alpha + L_{n+1}^\\\\alpha = x^2$, where $L_n$ represents the\\n$n$-th term in the Lucas sequence.\",\"PeriodicalId\":501502,\"journal\":{\"name\":\"arXiv - MATH - General Mathematics\",\"volume\":\"116 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - General Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10152\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文探讨了卢卡斯数与二叉方程之间错综复杂的关系,为数论领域做出了重要贡献。我们首先通过分析卢卡斯数 modulo $4$ 和雅可比符号的全等性质,确定关于卢卡斯数 $L_n= 3x^2$ 的方程在正整数中有唯一的解,特别是 $(n, x) = (2,1)$。我们还证明,只有当 $(n,x)=(5,1)$ 时,斐波那契数 $F_n$ 才能是 $F_n=5x^2$ 的形式。通过进一步研究,我们证明方程 $L_n^2+L_{n+1}^2=x^2$ 有一个唯一的解 $(n,x)=(2,5)$。最后,我们确定了方程 $L_n^\alpha + L_{n+1}^\alpha = x^2$ 的所有非负整数解 $(n,\alpha,x)$,其中 $L_n$ 表示卢卡斯序列中的第 n 项。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Certain Diophantine Equations Involving Lucas Numbers
This paper explores the intricate relationships between Lucas numbers and Diophantine equations, offering significant contributions to the field of number theory. We first establish that the equation regarding Lucas number $L_n = 3x^2$ has a unique solution in positive integers, specifically $(n, x) = (2, 1)$, by analyzing the congruence properties of Lucas numbers modulo $4$ and Jacobi symbols. We also prove that a Fibonacci number $F_n$ can be of the form $F_n=5x^2$ only when $(n,x)=(5,1)$. Expanding our investigation, we prove that the equation $L_n^2+L_{n+1}^2=x^2$ admits a unique solution $(n,x)=(2,5)$. In conclusion, we determine all non-negative integer solutions $(n, \alpha, x)$ to the equation $L_n^\alpha + L_{n+1}^\alpha = x^2$, where $L_n$ represents the $n$-th term in the Lucas sequence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信