通过组合技术估算 ODE 数值近似的误差。第一部分:一步法

Ahmad Deeb, Denys Dutykh
{"title":"通过组合技术估算 ODE 数值近似的误差。第一部分:一步法","authors":"Ahmad Deeb, Denys Dutykh","doi":"arxiv-2409.10548","DOIUrl":null,"url":null,"abstract":"In this study, we introduce a refined method for ascertaining error\nestimations in numerical simulations of dynamical systems via an innovative\napplication of composition techniques. Our approach involves a dual application\nof a basic one-step numerical method of order p in this part, and for the class\nof Backward Difference Formulas schemes in the second part [Deeb A., Dutykh D.\nand AL Zohbi M. Error estimation for numerical approximations of ODEs via\ncomposition techniques. Part II: BDF methods, Submitted, 2024]. This dual\napplication uses complex coefficients, resulting outputs in the complex plane.\nThe methods innovation lies in the demonstration that the real parts of these\noutputs correspond to approximations of the solutions with an enhanced order of\np + 1, while the imaginary parts serve as error estimations of the same order,\na novel proof presented herein using Taylor expansion and perturbation\ntechnique. The linear stability of the resulted scheme is enhanced compared to\nthe basic one. The performance of the composition in computing the\napproximation is also compared. Results show that the proposed technique\nprovide higher accuracy with less computational time. This dual composition\ntechnique has been rigorously applied to a variety of dynamical problems,\nshowcasing its efficacy in adapting the time step,particularly in situations\nwhere numerical schemes do not have theoretical error estimation. Consequently,\nthe technique holds potential for advancing adaptive time-stepping strategies\nin numerical simulations, an area where accurate local error estimation is\ncrucial yet often challenging to obtain.","PeriodicalId":501502,"journal":{"name":"arXiv - MATH - General Mathematics","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Error estimation for numerical approximations of ODEs via composition techniques. Part I: One-step methods\",\"authors\":\"Ahmad Deeb, Denys Dutykh\",\"doi\":\"arxiv-2409.10548\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we introduce a refined method for ascertaining error\\nestimations in numerical simulations of dynamical systems via an innovative\\napplication of composition techniques. Our approach involves a dual application\\nof a basic one-step numerical method of order p in this part, and for the class\\nof Backward Difference Formulas schemes in the second part [Deeb A., Dutykh D.\\nand AL Zohbi M. Error estimation for numerical approximations of ODEs via\\ncomposition techniques. Part II: BDF methods, Submitted, 2024]. This dual\\napplication uses complex coefficients, resulting outputs in the complex plane.\\nThe methods innovation lies in the demonstration that the real parts of these\\noutputs correspond to approximations of the solutions with an enhanced order of\\np + 1, while the imaginary parts serve as error estimations of the same order,\\na novel proof presented herein using Taylor expansion and perturbation\\ntechnique. The linear stability of the resulted scheme is enhanced compared to\\nthe basic one. The performance of the composition in computing the\\napproximation is also compared. Results show that the proposed technique\\nprovide higher accuracy with less computational time. This dual composition\\ntechnique has been rigorously applied to a variety of dynamical problems,\\nshowcasing its efficacy in adapting the time step,particularly in situations\\nwhere numerical schemes do not have theoretical error estimation. Consequently,\\nthe technique holds potential for advancing adaptive time-stepping strategies\\nin numerical simulations, an area where accurate local error estimation is\\ncrucial yet often challenging to obtain.\",\"PeriodicalId\":501502,\"journal\":{\"name\":\"arXiv - MATH - General Mathematics\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - General Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10548\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们通过创新性地应用组合技术,介绍了一种在动态系统数值模拟中确定误差估计的精炼方法。我们的方法在这一部分涉及 p 阶基本一步数值方法的双重应用,在第二部分则涉及一类后向差分公式方案[Deeb A., Dutykh D.and AL Zohbi M. Error estimation for numerical approximations of ODEs viacomposition techniques. Part II: BDF methods, Submitted, 2024]。第二部分:BDF 方法,已提交,2024 年]。该方法的创新之处在于证明了这些输出的实部对应于增强阶数为 p + 1 的解的近似值,而虚部则作为相同阶数的误差估计。与基本方案相比,结果方案的线性稳定性得到了增强。此外,还比较了计算近似值时的组成性能。结果表明,所提出的技术以更少的计算时间提供了更高的精度。这种二元组合技术已被严格应用于各种动力学问题,展示了它在调整时间步长方面的功效,尤其是在数值方案没有理论误差估计的情况下。因此,该技术具有在数值模拟中推进自适应时间步长策略的潜力,在这一领域,精确的局部误差估计至关重要,但往往难以获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Error estimation for numerical approximations of ODEs via composition techniques. Part I: One-step methods
In this study, we introduce a refined method for ascertaining error estimations in numerical simulations of dynamical systems via an innovative application of composition techniques. Our approach involves a dual application of a basic one-step numerical method of order p in this part, and for the class of Backward Difference Formulas schemes in the second part [Deeb A., Dutykh D. and AL Zohbi M. Error estimation for numerical approximations of ODEs via composition techniques. Part II: BDF methods, Submitted, 2024]. This dual application uses complex coefficients, resulting outputs in the complex plane. The methods innovation lies in the demonstration that the real parts of these outputs correspond to approximations of the solutions with an enhanced order of p + 1, while the imaginary parts serve as error estimations of the same order, a novel proof presented herein using Taylor expansion and perturbation technique. The linear stability of the resulted scheme is enhanced compared to the basic one. The performance of the composition in computing the approximation is also compared. Results show that the proposed technique provide higher accuracy with less computational time. This dual composition technique has been rigorously applied to a variety of dynamical problems, showcasing its efficacy in adapting the time step,particularly in situations where numerical schemes do not have theoretical error estimation. Consequently, the technique holds potential for advancing adaptive time-stepping strategies in numerical simulations, an area where accurate local error estimation is crucial yet often challenging to obtain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信