用于可合成药物设计的量子启发强化学习

Dannong Wang, Jintai Chen, Zhiding Liang, Tianfan Fu, Xiao-Yang Liu
{"title":"用于可合成药物设计的量子启发强化学习","authors":"Dannong Wang, Jintai Chen, Zhiding Liang, Tianfan Fu, Xiao-Yang Liu","doi":"arxiv-2409.09183","DOIUrl":null,"url":null,"abstract":"Synthesizable molecular design (also known as synthesizable molecular\noptimization) is a fundamental problem in drug discovery, and involves\ndesigning novel molecular structures to improve their properties according to\ndrug-relevant oracle functions (i.e., objective) while ensuring synthetic\nfeasibility. However, existing methods are mostly based on random search. To\naddress this issue, in this paper, we introduce a novel approach using the\nreinforcement learning method with quantum-inspired simulated annealing policy\nneural network to navigate the vast discrete space of chemical structures\nintelligently. Specifically, we employ a deterministic REINFORCE algorithm\nusing policy neural networks to output transitional probability to guide state\ntransitions and local search using genetic algorithm to refine solutions to a\nlocal optimum within each iteration. Our methods are evaluated with the\nPractical Molecular Optimization (PMO) benchmark framework with a 10K query\nbudget. We further showcase the competitive performance of our method by\ncomparing it against the state-of-the-art genetic algorithms-based method.","PeriodicalId":501022,"journal":{"name":"arXiv - QuanBio - Biomolecules","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum-inspired Reinforcement Learning for Synthesizable Drug Design\",\"authors\":\"Dannong Wang, Jintai Chen, Zhiding Liang, Tianfan Fu, Xiao-Yang Liu\",\"doi\":\"arxiv-2409.09183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Synthesizable molecular design (also known as synthesizable molecular\\noptimization) is a fundamental problem in drug discovery, and involves\\ndesigning novel molecular structures to improve their properties according to\\ndrug-relevant oracle functions (i.e., objective) while ensuring synthetic\\nfeasibility. However, existing methods are mostly based on random search. To\\naddress this issue, in this paper, we introduce a novel approach using the\\nreinforcement learning method with quantum-inspired simulated annealing policy\\nneural network to navigate the vast discrete space of chemical structures\\nintelligently. Specifically, we employ a deterministic REINFORCE algorithm\\nusing policy neural networks to output transitional probability to guide state\\ntransitions and local search using genetic algorithm to refine solutions to a\\nlocal optimum within each iteration. Our methods are evaluated with the\\nPractical Molecular Optimization (PMO) benchmark framework with a 10K query\\nbudget. We further showcase the competitive performance of our method by\\ncomparing it against the state-of-the-art genetic algorithms-based method.\",\"PeriodicalId\":501022,\"journal\":{\"name\":\"arXiv - QuanBio - Biomolecules\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Biomolecules\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09183\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Biomolecules","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

可合成分子设计(又称可合成分子优化)是药物发现中的一个基本问题,它涉及设计新型分子结构,以根据与药物相关的oracle函数(即目标)改善其特性,同时确保合成的可行性。然而,现有的方法大多基于随机搜索。为了解决这个问题,我们在本文中引入了一种新方法,利用其中的强化学习方法和量子启发的模拟退火策略神经网络,在广阔的离散化学结构空间中进行智能导航。具体来说,我们采用了一种确定性的 REINFORCE 算法,利用策略神经网络输出过渡概率来引导状态转换,并利用遗传算法进行局部搜索,在每次迭代中将解决方案完善到局部最优。我们使用实用分子优化(PMO)基准框架对我们的方法进行了评估,查询预算为 10K。通过与最先进的基于遗传算法的方法进行比较,我们进一步展示了我们的方法具有竞争力的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum-inspired Reinforcement Learning for Synthesizable Drug Design
Synthesizable molecular design (also known as synthesizable molecular optimization) is a fundamental problem in drug discovery, and involves designing novel molecular structures to improve their properties according to drug-relevant oracle functions (i.e., objective) while ensuring synthetic feasibility. However, existing methods are mostly based on random search. To address this issue, in this paper, we introduce a novel approach using the reinforcement learning method with quantum-inspired simulated annealing policy neural network to navigate the vast discrete space of chemical structures intelligently. Specifically, we employ a deterministic REINFORCE algorithm using policy neural networks to output transitional probability to guide state transitions and local search using genetic algorithm to refine solutions to a local optimum within each iteration. Our methods are evaluated with the Practical Molecular Optimization (PMO) benchmark framework with a 10K query budget. We further showcase the competitive performance of our method by comparing it against the state-of-the-art genetic algorithms-based method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信