JRNA Gunawardana, SD Viswakula, Ravindra P Rannan-Eliya, Nilmini Wijemunige
{"title":"斯里兰卡成人哮喘疾病预测的机器学习方法","authors":"JRNA Gunawardana, SD Viswakula, Ravindra P Rannan-Eliya, Nilmini Wijemunige","doi":"10.1177/14604582241283968","DOIUrl":null,"url":null,"abstract":"Objectives: Addressing the challenge of cost-effective asthma diagnosis amidst diverse symptom patterns among patients, this study aims to develop a machine learning-based asthma prediction tool for self-detection of asthma. Methods: Data from 6,665 participants in the Sri Lanka Health and Ageing Study (2018-2019) are used for this research. Thirteen machine learning algorithms, including Logistic Regression, Support Vector Machine, Decision Tree, Random Forest, Naïve Bayes, K-Nearest Neighbors, Gradient Boost, XGBoost, AdaBoost, CatBoost, LightGBM, Multi-Layer Perceptron, and Probabilistic Neural Network, are employed. Results: A hybrid version of Logistic Regression and LightGBM outperformed other models, achieving an AUC of 0.9062 and 79.85% sensitivity. Key predictive features for asthma include wheezing, breathlessness with wheezing, shortness of breath attacks, coughing attacks, chest tightness, nasal allergies, physical activity, passive smoking, ethnicity, and residential sector. Conclusion: Combining Logistic Regression and LightGBM models can effectively predict adult asthma based on self-reported symptoms and demographic and behavioural characteristics. The proposed expert system assists clinicians and patients in diagnosing potential asthma cases.","PeriodicalId":55069,"journal":{"name":"Health Informatics Journal","volume":"26 1","pages":"14604582241283968"},"PeriodicalIF":2.2000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning approaches for asthma disease prediction among adults in Sri Lanka\",\"authors\":\"JRNA Gunawardana, SD Viswakula, Ravindra P Rannan-Eliya, Nilmini Wijemunige\",\"doi\":\"10.1177/14604582241283968\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objectives: Addressing the challenge of cost-effective asthma diagnosis amidst diverse symptom patterns among patients, this study aims to develop a machine learning-based asthma prediction tool for self-detection of asthma. Methods: Data from 6,665 participants in the Sri Lanka Health and Ageing Study (2018-2019) are used for this research. Thirteen machine learning algorithms, including Logistic Regression, Support Vector Machine, Decision Tree, Random Forest, Naïve Bayes, K-Nearest Neighbors, Gradient Boost, XGBoost, AdaBoost, CatBoost, LightGBM, Multi-Layer Perceptron, and Probabilistic Neural Network, are employed. Results: A hybrid version of Logistic Regression and LightGBM outperformed other models, achieving an AUC of 0.9062 and 79.85% sensitivity. Key predictive features for asthma include wheezing, breathlessness with wheezing, shortness of breath attacks, coughing attacks, chest tightness, nasal allergies, physical activity, passive smoking, ethnicity, and residential sector. Conclusion: Combining Logistic Regression and LightGBM models can effectively predict adult asthma based on self-reported symptoms and demographic and behavioural characteristics. The proposed expert system assists clinicians and patients in diagnosing potential asthma cases.\",\"PeriodicalId\":55069,\"journal\":{\"name\":\"Health Informatics Journal\",\"volume\":\"26 1\",\"pages\":\"14604582241283968\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Health Informatics Journal\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/14604582241283968\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Informatics Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/14604582241283968","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
Machine learning approaches for asthma disease prediction among adults in Sri Lanka
Objectives: Addressing the challenge of cost-effective asthma diagnosis amidst diverse symptom patterns among patients, this study aims to develop a machine learning-based asthma prediction tool for self-detection of asthma. Methods: Data from 6,665 participants in the Sri Lanka Health and Ageing Study (2018-2019) are used for this research. Thirteen machine learning algorithms, including Logistic Regression, Support Vector Machine, Decision Tree, Random Forest, Naïve Bayes, K-Nearest Neighbors, Gradient Boost, XGBoost, AdaBoost, CatBoost, LightGBM, Multi-Layer Perceptron, and Probabilistic Neural Network, are employed. Results: A hybrid version of Logistic Regression and LightGBM outperformed other models, achieving an AUC of 0.9062 and 79.85% sensitivity. Key predictive features for asthma include wheezing, breathlessness with wheezing, shortness of breath attacks, coughing attacks, chest tightness, nasal allergies, physical activity, passive smoking, ethnicity, and residential sector. Conclusion: Combining Logistic Regression and LightGBM models can effectively predict adult asthma based on self-reported symptoms and demographic and behavioural characteristics. The proposed expert system assists clinicians and patients in diagnosing potential asthma cases.
期刊介绍:
Health Informatics Journal is an international peer-reviewed journal. All papers submitted to Health Informatics Journal are subject to peer review by members of a carefully appointed editorial board. The journal operates a conventional single-blind reviewing policy in which the reviewer’s name is always concealed from the submitting author.